Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Sounding out buried nanostructures using subsurface ultrasonic resonance force microscopy

Abstract

Imaging of nanoscale structures buried in a covering material is an extremely challenging task, but is also considered extremely important in a wide variety of fields. From fundamental research into the way living cells are built up to process control in semiconductor manufacturing would all benefit from the capability to image nanoscale structures through arbitrary covering layers. Combining Atomic Force Microscopy (AFM) with ultrasound has been shown a promising technology to enable such imaging in various configurations. Here we report the development of an alternative method of combining AFM with ultrasound which we call SubSurface Ultrasonic Resonance Force Microscopy (SSURFM) and which is based on a combination of the two most common variants described in literature, which each have their specific strong points: Ultrasonic Force Microscopy (UFM) and Contact Resonance AFM (CR-AFM). We show the excellent performance of this combination on a number of samples designed specifically to mimic relevant conditions for the application as a metrology technique in the semiconductor manufacturing process. We also discuss the physics of the image contrast mechanism which is based on sensing local changes in visco-elastic properties of the sample bygenerating large indentations in the surface.</p

Similar works

Full text

thumbnail-image

Pure OAI Repository

redirect
Last time updated on 11/08/2023

This paper was published in Pure OAI Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.