Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Direct simulation of liquid–gas–solid flow with a free surface lattice Boltzmann method

Abstract

Direct numerical simulation of liquid–gas–solid flows is uncommon due to the considerable computational cost. As the grid spacing is determined by the smallest involved length scale, large grid sizes become necessary–in particular, if the bubble–particle aspect ratio is on the order of 10 or larger. Hence, it arises the question of both feasibility and reasonability. In this paper, we present a fully parallel, scalable method for direct numerical simulation of bubble–particle interaction at a size ratio of 1–2 orders of magnitude that makes simulations feasible on currently available super-computing resources. With the presented approach, simulations of bubbles in suspension columns consisting of more than 100,000 fully resolved particles become possible. Furthermore, we demonstrate the significance of particle-resolved simulations by comparison to previous unresolved solutions. The results indicate that fully resolved direct numerical simulation is indeed necessary to predict the flow structure of bubble–particle interaction problems correctly.</p

Similar works

This paper was published in Pure OAI Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.