Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Empirical study on the efficiency of Spiking Neural Networks with axonal delays, and algorithm-hardware benchmarking

Abstract

The role of axonal synaptic delays in the efficacy and performance of artificial neural networks has been largely unexplored. In step-based analog-valued neural network models (ANNs), the concept is almost absent. In their spiking neuroscience-inspired counterparts, there is hardly a systematic account of their effects on model performance in terms of accuracy and number of synaptic operations. This paper proposes a methodology for accounting for axonal delays in the training loop of deep Spiking Neural Networks (SNNs), intending to efficiently solve machine learning tasks on data with rich temporal dependencies. We then conduct an empirical study of the effects of axonal delays on model performance during inference for the Adding task [1]-[3], a benchmark for sequential regression, and for the Spiking Heidelberg Digits dataset (SHD) [4], commonly used for evaluating event-driven models. Quantitative results on the SHD show that SNNs incorporating axonal delays instead of explicit recurrent synapses achieve state-of-the-art, over 90% test accuracy while needing less than half trainable synapses. Additionally, we estimate the required memory in terms of total parameters and energy consumption of accomodating such delay-trained models on a modern neuromorphic accelerator [5], [6]. These estimations are based on the number of synaptic operations and the reference GF-22nm FDX CMOS technology. As a result, we demonstrate that a reduced parameterization, which incorporates axonal delays, leads to approximately 90% energy and memory reduction in digital hardware implementations for a similar performance in the aforementioned task.</p

Similar works

Full text

thumbnail-image

Pure OAI Repository

redirect
Last time updated on 11/08/2023

This paper was published in Pure OAI Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.