Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Near-integrable behaviour in a family of discretised rotations

Abstract

PhDWe consider a one-parameter family of invertible maps of a twodimensional lattice, obtained by applying round-o to planar rotations. All orbits of these maps are conjectured to be periodic. We let the angle of rotation approach =2, and show that the limit of vanishing discretisation is described by an integrable piecewise-a ne Hamiltonian ow, whereby the plane foliates into families of invariant polygons with an increasing number of sides. Considered as perturbations of the ow, the lattice maps assume a di erent character, described in terms of strip maps: a variant of those found in outer billiards of polygons. Furthermore, the flow is nonlinear (unlike the original rotation), and a suitably chosen Poincar e return map satisfi es a twist condition. The round-o perturbation introduces KAM-type phenomena: we identify the unperturbed curves which survive the perturbation, and show that they form a set of positive density in the phase space. We prove this considering symmetric orbits, under a condition that allows us to obtain explicit values for densities. Finally, we show that the motion at in finity is a dichotomy: there is one regime in which the nonlinearity tends to zero, leaving only the perturbation, and a second where the nonlinearity dominates. In the domains where the nonlinearity remains, numerical evidence suggests that the distribution of the periods of orbits is consistent with that of random dynamics, whereas in the absence of nonlinearity, the fluctuations result in intricate discrete resonant structures.EPSRC . Eileen Eliza Colyer Prize and the Queen Mary Postgraduate Research Fun

Similar works

This paper was published in Queen Mary Research Online.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.