Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Three-dimensional charge transport mapping by two-photon absorption edge transient-current technique in synthetic single-crystalline diamond

Abstract

We demonstrate the application of the two-photon absorption transient current technique to wide bandgap semiconductors. We utilize it to probe charge transport properties of single-crystal Chemical Vapor Deposition (scCVD) diamond. The charge carriers, inside the scCVD diamond sample, are excited by a femtosecond laser through simultaneous absorption of two photons. Due to the nature of two-photon absorption, the generation of charge carriers is confined in space (3-dimensional, 3-D) around the focal point of the laser. Such localized charge injection allows us to probe the charge transport properties of the semiconductor bulk with a fine-grained 3-D resolution. Exploiting spatial confinement of the generated charge, the electrical field of the diamond bulk was mapped at different depths and compared to an X-ray diffraction topograph of the sample. Measurements utilizing this method provide a unique way of exploring spatial variations of charge transport properties in transparent wide-bandgap semiconductors

Similar works

Full text

thumbnail-image

Archivio istituzionale della ricerca - Politecnico di Milano

redirect
Last time updated on 15/12/2019

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.