Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

The Wisdom of Networks: A General Adaptation and Learning Mechanism of Complex Systems: The Network Core Triggers Fast Responses to Known Stimuli; Innovations Require the Slow Network Periphery and Are Encoded by Core-Remodeling

Abstract

I hypothesize that re-occurring prior experience of complex systems mobilizes a fast response, whose attractor is encoded by their strongly connected network core. In contrast, responses to novel stimuli are often slow and require the weakly connected network periphery. Upon repeated stimulus, peripheral network nodes remodel the network core that encodes the attractor of the new response. This “core-periphery learning” theory reviews and generalizes the heretofore fragmented knowledge on attractor formation by neural networks, periphery-driven innovation, and a number of recent reports on the adaptation of protein, neuronal, and social networks. The core-periphery learning theory may increase our understanding of signaling, memory formation, information encoding and decision-making processes. Moreover, the power of network periphery-related “wisdom of crowds” inventing creative, novel responses indicates that deliberative democracy is a slow yet efficient learning strategy developed as the success of a billion-year evolution. Also see the video abstract here: https://youtu.be/IIjP7zWGjVE. © 2017 WILEY Periodicals, Inc

Similar works

This paper was published in Semmelweis Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.