Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Using migratable objects to enhance fault tolerance schemes in supercomputers

Abstract

Supercomputers have seen an exponential increase in their size in the last two decades. Such a high growth rate is expected to take us to exascale in the timeframe 2018-2022. But, to bring a productive exascale environment about, it is necessary to focus on several key challenges. One of those challenges is fault tolerance. Machines at extreme scale will experience frequent failures and will require the system to avoid or overcome those failures. Various techniques have recently been developed to tolerate failures. The impact of these techniques and their scalability can be substantially enhanced by a parallel programming model called migratable objects. In this paper, we demonstrate how the migratable-objects model facilitates and improves several fault tolerance approaches. Our experimental results on thousands of cores suggest fault tolerance schemes based on migratable objects have low performance overhead and high scalability. Additionally, we present a performance model that predicts a significant benefit of using migratable objects to provide fault tolerance at extreme scale

Similar works

Full text

thumbnail-image

Repositorio Institucional del Instituto Tecnologico de Costa Rica

redirect
Last time updated on 16/06/2017

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.