Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Towards a heterogeneous fault-tolerance architecture based on Arm and RISC-V processors

Abstract

Computer systems are permanently present in our daily basis in a wide range of applications. In systems with mixed-criticality requirements, e.g., autonomous driving or aerospace applications, devices are expected to continue operating properly even in the event of a failure. An approach to improve the robustness of the device's operation lies in enabling faulttolerant mechanisms during the system's design. This article proposes Lock-V, a heterogeneous architecture that explores a Dual-Core Lockstep (DCLS) fault-tolerance technique in two different processing units: a hard-core Arm Cortex-A9 and a softcore RISC-V-based processor. It resorts a System-on-Chip (SoC) solution with software programmability (available trough the hard-core Arm Cortex-A9) and field-programmable gate array (FPGA) technology, taking advantages from the latter to support the deployment of the RISC-V soft-core along with dedicated hardware accelerators towards the realization of the DCLS.This work has been supported by national funds through FCT -Fundação para a Ciência e a Tecnologia within the Project Scope: UID/CEC/00319/2019

Similar works

This paper was published in Universidade do Minho: RepositoriUM.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.