Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Geometric Spanner of Segments (Algorithms and Computation)

Abstract

Algorithms and computation : 18th International Symposium, ISAAC 2007, Sendai, Japan, December 17-19, 2007 : proceedings ; ISAAC 2007 : (Lecture notes in computer science ; 4835)Proc. of ISACCGeometric spanner is a fundamental structure in computational geometry and plays an important role in many geometric networks design applications. In this paper, we consider a generalization of the classical geometric spanner problem (called segment spanner): Given a set S of disjoint 2-D segments, find a spanning network G with minimum size so that for any pair of points in S, there exists a path in G with length no more than t times their Euclidean distance. Based on a number of interesting techniques (such as weakly dominating set, strongly dominating set, and interval cover), we present an efficient algorithm to construct the segment spanner. Our approach first identifies a set of Steiner points in S, then construct a point spanner for them. Our algorithm runs in O(|Q| + n 2 logn) time, where Q is the set of Steiner points. We show that Q is an O(1)-approximation in terms of its size when S is relatively “well” separated by a constant. For arbitrary rectilinear segments under L 1 distance, the approximation ratio improves to 2

Similar works

Full text

thumbnail-image

Kyoto University Research Information Repository

redirect
Last time updated on 13/06/2016

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.