Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Integrated modular microfluidic system for forensic Alu DNA typing

Abstract

Driven by the numerous applications of genome-related research, fully integrated microfluidic systems have been developed that have advanced the capabilities of molecular and, in particular, genetic analyses. A brief overview on integrated microfluidic systems for DNA analysis is given in Chapter 1 followed by a report on micro-capillary electrophoresis (µCE) of Alu elements with laser-induced fluorescence (LIF) detection, in which the monomorphic Alu insertions on the X and Y chromosomes were utilized to detect male DNA in large female DNA background (Y: X = 1:19) without cell sorting prior to the determination. The polymorphic Alu loci with known restricted geographical distribution were used for ethnicity determination. A valveless integrated microsystem that consists of three modules is discussed as well: (1) A solid-phase extraction (SPE) module microfabricated on polycarbonate, for DNA extraction from whole cell lysates (extraction bed capacity ~209 ±35.6 ng/cm² of total DNA). (2) A continuous-flow polymerase chain reaction (CFPCR) module fabricated in polycarbonate (Tg ~150 ºC) in which selected gene fragments were amplified using biotin and fluorescently-labeled primers accomplished by continuously shuttling small packets of PCR reagents and template through isothermal zones. (3) µCE module fabricated in poly(methylmethacrylate), which utilized a bioaffinity selection and purification bed (2.9-µL) to preconcentrate and purify the PCR products generated from the CFPCR module prior to µCE. Biotin-labeled CFPCR products were hydrostatically pumped through the streptavidin-modified bed where they were extracted onto the surface of the poly(methylmethacrylate) micropillars (50-µm width; 100-µm height; total surface area of ~117 mm²). This SPE process demonstrated high selectivity for biotinylated amplicons and utilized the strong streptavidin/biotin interaction (Kd =10-15M) to generate high recoveries. The SPE selected CFPCR products were thermally denatured and single stranded DNA released for size-based separations and LIF detection. The multiplexed SPE-CFPCR-µCE yielded detectable fluorescence signal (S/N≥3; LOD ~75 cells) for Alu DNA amplicons for gender and ethnicity determinations with a separation efficiency of ~1.5 x105 plates/m. Compared to traditional cross-T injection procedures typically used for µCE, the affinity preconcentration and injection procedure generated signal enhancements of 17-40 fold, critical for CFPCR thermal cyclers due to Taylor dispersion associated with their operation

Similar works

Full text

thumbnail-image

Louisiana State University

redirect
Last time updated on 26/10/2023

This paper was published in Louisiana State University.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.