Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

5-Bit Dual-Slope Analog-to-Digital Converter-Based Time-to-Digital Converter Chip Design in CMOS Technology

Abstract

Time-to-Digital Converters (TDC) have gained increasing importance in modern implementations of mixed-signal, data-acquisition and processing interfaces and are used to perform high precision time intervals in systems that incorporate Time-of-Flight (ToF) or Time-of-Arrival (ToA) measurements. The linearity of TDCs is very crucial since most Digital Signal Processing (DSP) systems require very linear inputs to achieve high accuracy. In this work, a TDC has been designed in the 0.5 μm n-well CMOS process that can be used for on-chip integration and in applications requiring high linearity. This TDC used a Dual-Slope-ADC-based architecture for the time-to-digital conversion and consists of the following three main sub-circuits: a time-to-voltage conversion part, an integrating part and digital circuitry. The design is operated with ±2.5V supply voltage and the digital circuitry, consisting of two digital counters and an adder, are operated with a clock frequency of 13MHz. The design of the TDC is discussed and simulated and experimental test results and linearity performance of the fabricated TDC are also presented

Similar works

Full text

thumbnail-image

Louisiana State University

redirect
Last time updated on 26/10/2023

This paper was published in Louisiana State University.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.