Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Strong converse theorems using Rényi entropies

Abstract

We use a Rényi entropy method to prove a strong converse theorem for the task of quantum state redistribution. More precisely, we establish the strong converse property for the boundary of the entire achievable rate region in the (e, q)-plane, where the entanglement cost e and quantum communication cost q are the operational rates describing a state redistribution protocol. The strong converse property is deduced from explicit bounds on the fidelity of the protocol in terms of a Rényi generalization of the optimal rates. Hence, we identify candidates for the strong converse exponents for entanglement cost e and quantum communication cost q, respectively. To prove our results, we establish various new entropic inequalities, which might be of independent interest. These involve conditional entropies and mutual information derived from the sandwiched Rényi divergence. In particular, we obtain novel bounds relating these quantities to the fidelity of two quantum states

Similar works

Full text

thumbnail-image

Louisiana State University

redirect
Last time updated on 26/10/2023

This paper was published in Louisiana State University.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.