Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Sequential decoding of a general classical-quantum channel

Abstract

Because a quantum measurement generally disturbs the state of a quantum system, one might think that it should not be possible for a sender and receiver to communicate reliably when the receiver performs a large number of sequential measurements to determine the message of the sender.We show here that this intuition is not true, by demonstrating that a sequential decoding strategy works well even in the most general \u27one-shot\u27 regime, where we are given a single instance of a channel and wish to determine the maximal number of bits that can be communicated up to a small failure probability. This result follows by generalizing a non-commutative union bound to apply for a sequence of general measurements. We also demonstrate two ways in which a receiver can recover a state close to the original state after it has been decoded by a sequence of measurements that each succeed with high probability. The second of these methods will be useful in realizing an efficient decoder for fully quantum polar codes, should a method ever be found to realize an efficient decoder for classical-quantum polar codes. © 2013 The Authors

Similar works

Full text

thumbnail-image

Louisiana State University

redirect
Last time updated on 26/10/2023

This paper was published in Louisiana State University.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.