Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Low-dimensional Representations of Hyperspectral Data for Use in CRF-based Classification

Abstract

Probabilistic graphical models have strong potential for use in hyperspectral image classification. One important class of probabilisitic graphical models is the Conditional Random Field (CRF), which has distinct advantages over traditional Markov Random Fields (MRF), including: no independence assumption is made over the observation, and local and pairwise potential features can be defined with flexibility. Conventional methods for hyperspectral image classification utilize all spectral bands and assign the corresponding raw intensity values into the feature functions in CRFs. These methods, however, require significant computational efforts and yield an ambiguous summary from the data. To mitigate these problems, we propose a novel processing method for hyperspectral image classification by incorporating a lower dimensional representation into the CRFs. In this paper, we use representations based on three types of graph-based dimensionality reduction algorithms: Laplacian Eigemaps (LE), Spatial-Spectral Schroedinger Eigenmaps (SSSE), and Local Linear Embedding (LLE), and we investigate the impact of choice of representation on the subsequent CRF-based classifications

Similar works

Full text

thumbnail-image

RIT Scholar Works

redirect
Last time updated on 12/01/2024

This paper was published in RIT Scholar Works.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.