Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Resiliency in Deep Convolutional Neural Networks

Abstract

The enormous success and popularity of deep convolutional neural networks for object detection has prompted their deployment in various real-world applications. However, their performance in the presence of hardware faults or damage that could occur in the field has not been studied. This thesis explores the resiliency of six popular network architectures for image classification, AlexNet, VGG16, ResNet, GoogleNet, SqueezeNet and YOLO9000, when subjected to various degrees of failures. We introduce failures in a deep network by dropping a percentage of weights at each layer. We then assess the effects of these failures on classification performance. We find the fitness of the weights and then dropped from least fit to most fit weights. Finally, we determine the ability of the network to self-heal and recover its performance by retraining its healthy portions after partial damage. We try different methods to re-train the healthy portion by varying the optimizer. We also try to find the time and resources required for re-training. We also reduce the number of parameters in GoogleNet, VGG16 to the size of SqueezeNet and re-trained with varying percentage of dataset. This can be used as a network pruning method

Similar works

Full text

thumbnail-image

RIT Scholar Works

redirect
Last time updated on 12/01/2024

This paper was published in RIT Scholar Works.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.