Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Developing germanium on nothing (GON) nanowire arrays

Abstract

Advanced crystal growth techniques enable novel devices and circuit designs to further scale and integrate heterogeneous structures for CMOS, MEMS/NEMS, and optoelectronic applications. In particular, nanowires (NW) are among the promising structures derived from these developments. Research has demonstrated the utility of NWs as a channel material for gate-all-around transistors, high sensitivity biological/chemical sensors, photodetectors, as well as a whole spectrum of LEDs and lasers. However, NW based devices are not without their fabrication challenges. Relatively simple structures for CMOS or MEMS/NEMS processes are difficult to reproduce when many NW based devices rely on a dropcast process. This thesis demonstrates a method for producing Germanium on Nothing (GON) NW arrays on a Si substrate that forgoes dropcasting and, instead, creates NWs via selective material removal methods commonly utilized by industry. GON NW arrays are formed through the sequential use of E-beam lithography, selective wet chemical etching, and reactive ion etching. Global oxide thinning in BOE leaves a thin masking layer that protects the underlying Si, preventing etching in a TMAH solution. GON regions are defined by E-beam lithography and are subject to a RIE which creates release points in the remaining SiO2. Unmasked Si is then etched by a TMAH solution, undercutting the Ge lines, leaving an array of suspended Ge wires. NW dimensions are reached by thinning the Ge wire diameter with a H2O2 solution. NWs with ~50 nm diameters and ~ 200 nm lengths, as well as 10 [micron] by 10 [micron] membranes of Ge/SiO2, have been demonstrated in this thesis

Similar works

Full text

thumbnail-image

RIT Scholar Works

redirect
Last time updated on 12/01/2024

This paper was published in RIT Scholar Works.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.