Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Heterogeneous Photonic Network-on-Chip with Dynamic Bandwidth Allocation

Abstract

Advancements in the field of chip fabrication has facilitated in integrating more number of transistors in a given area which has lead to an era of multi-core processors. Future multi-core chips or chip multiprocessors (CMPs) will have hundreds of heterogeneous components including processing engines, custom logic, GPU units, programmable fabrics and distributed memory. Such multi-core chips are expected to run varied multiple parallel workloads simultaneously. Hence, different communicating cores will require different bandwidths leading to the necessity of a heterogeneous Network-on-Chip (NoC) architecture. Simply over-provisioning for performance will invariably result in loss of power efficiency. On the other hand, recent research has shown that photonic interconnects are capable of achieving high-bandwidth and energy-efficient on-chip data transfer. In this paper we propose a dynamic heterogeneous photonic NoC (d-HetPNOC) architecture with dynamic bandwidth allocation to achieve better performance and energy-efficiency compared to a homogeneous photonic NoC architecture with the same aggregate data bandwidth

Similar works

Full text

thumbnail-image

RIT Scholar Works

redirect
Last time updated on 12/01/2024

This paper was published in RIT Scholar Works.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.