Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

A Charge Pump Architecture with High Power-Efficiency and Low Output Ripple Noise in 0.5 μm CMOS Process Technology

Abstract

The demand of portable consumer electronic devices is skyrocketing day-by-day. Such modern integrated microsystems have several functional blocks which require different voltages to operate adequately. DC-DC converter circuits are used to generate different voltage domains for different functional blocks on large integrated microsystems from a single voltage battery-operated power supply. Charge pump is an inductorless DC-DC converter which generates higher positive voltage or lower voltage or negative voltage from the applied reference voltage. A charge pump circuit uses switches for charge transfer action and capacitors for charge storage. The thesis presents a high power-efficiency charge pump architecture with low output ripple noise in the AMI N-well 0.5 µm CMOS process technology. The switching action of the proposed charge pump architecture is controlled by a dual phase non-overlapping clock system. In order to achieve high power-efficiency, the power losses due to the leakage currents, the finite switch resistance and the imperfect charge transfer between the capacitors are taken into consideration and are minimized by proper switching of the charge transfer switches and by using different auxiliary circuits. To achieve low output ripple noise, the continuous current pumping method is proposed and implemented in the charge pump architecture. The proposed charge pump can operate over the wide input voltage range varying from 3 V to 7 V with the power conversion efficiency of 90%. The loading current drive capability of the proposed charge pump is ranging from 0 to 45 mA. The worst case output ripple voltage is less than 25 mV. To prove the concept, the design of the proposed charge pump is simulated rigorously over different process, temperature and voltage corners

Similar works

Full text

thumbnail-image

RIT Scholar Works

redirect
Last time updated on 12/01/2024

This paper was published in RIT Scholar Works.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.