Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

An NMR Study of Helium-3 Adsorbed on Hexagonal Boron Nitride

Abstract

A Pulse-NMR study of helium-3 adsorbed on hexagonal boron-nitride (BN) powder has been performed. Structurally very similar to graphite, the exposed basalplanes present a very smooth, ideal adsorbing surface and lack its undesirable strong anisotropic diamagnetism. The relaxation times T1 and T2 of helium-3 have been measured as a function of coverage, temperature and frequency. A variety of two dimensional phases have been observed including: a fluid, commensurate solid, incommensurate solid plus a separate crystallite edge film. 2D melting in the incommensurate solid and an order-disorder transition in the commensurate solid have been observed. Evidence for a low temperature, low coverage fluid+commensurate solid coexistence which transforms to a single phase at higher temperatures plus a possible domain-wall phase at higher coverages has been identified. Coupled magnetic relaxation between the helium-3 film and substrate boron-11 spins has been noted. Boron-11 relaxation times have been measured against coverage and temperature. Heteronuclear relaxation is particularly important in the commensurate phases where it can dominate homonuclear spin-lattice relaxation, providing a powerful new probe of the low coverage phases. Based on the detailed theory of coupled magnetic dipolar relaxation a model has been developed which quantitatively describes all the important features of the data many of which are unique to the BN/3He system. Presented separately in chapter 8, it concludes the magnetic properties of registered helium 3 spins are dominated by 14N�� 3He cross relaxation processes, mediated by the €14N quadrupole splitting at FQ(14N) and driven by exchange motion in the film. Using a computer for unattended, real-time experimental control has allowed substantial quantities of high quality relaxation data to be taken. Off-line, automated, numerical analysis of raw spin-echo and processed data has been extensively used. Modelling relaxation data with a stretched-exponential function, h(t) = h(0) exp(ta/T1,2) has provided a exceptionally sensitive indicator of physical changes in the film

Similar works

This paper was published in Royal Holloway Research Online.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.