Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Automatic Filter Design for Synthesis of Haptic Textures from Recorded Acceleration Data

Abstract

Sliding a probe over a textured surface generates a rich collection of vibrations that one can easily use to create a mental model of the surface. Haptic virtual environments attempt to mimic these real interactions, but common haptic rendering techniques typically fail to reproduce the sensations that are encountered during texture exploration. Past approaches have focused on building a representation of textures using a priori ideas about surface properties. Instead, this paper describes a process of synthesizing probe-surface interactions from data recorded from real interactions. We explain how to apply the mathematical principles of Linear Predictive Coding (LPC) to develop a discrete transfer function that represents the acceleration response under specific probe-surface interaction conditions. We then use this predictive transfer function to generate unique acceleration signals of arbitrary length. In order to move between transfer functions from different probe-surface interaction conditions, we develop a method for interpolating the variables involved in the texture synthesis process. Finally, we compare the results of this process with real recorded acceleration signals, and we show that the two correlate strongly in the frequency domain

Similar works

This paper was published in ScholarlyCommons@Penn.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.