Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Glauber Dynamics on Trees and Hyperbolic Graphs

Abstract

We study continuous time Glauber dynamics for random configurations with local constraints (e.g. proper coloring, Ising and Potts models) on finite graphs with n vertices and of bounded degree. We show that the relaxation time (defined as the reciprocal of the spectral gap |λ1−λ2|) for the dynamics on trees and on planar hyperbolic graphs, is polynomial in n. For these hyperbolic graphs, this yields a general polynomial sampling algorithm for random configurations. We then show that for general graphs, if the relaxation time τ2 satisfies τ2=O(1), then the correlation coefficient, and the mutual information, between any local function (which depends only on the configuration in a fixed window) and the boundary conditions, decays exponentially in the distance between the window and the boundary. For the Ising model on a regular tree, this condition is sharp

Similar works

This paper was published in ScholarlyCommons@Penn.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.