Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Deep brain drug-delivery control using vagus nerve communications

Abstract

Vagus nerve stimulation (VNS) uses electrical impulses applied at the neck in order to mitigate the effects of, for example, epileptic seizures. We propose using VNS to provide data pulses to communicate with a drug-delivery system embedded near the brainstem. We model the generation of a vagus nerve compound action potential (CAP), calculating the signal attenuation and the resulting transmission range. The metabolic cost of CAP transmission in terms of the use of adenosine triphosphate (ATP) is also calculated. The channel capacity for on-off keying (OOK) is computed from the CAP characteristics, the neural refractory period and the level of background neural noise. The resulting low bit-rate, unidirectional asynchronous transmission system is analysed for the use of different methods of forward error correction (FEC) to improve bit-error rate (BER). We show a proposed data packet structure that could deliver instructions to an embedded drug-delivery system with multiple addressable drug reservoirs. We also analyse the scope for powering the drug-delivery system with energy harvested from cerebrospinal glucose

Similar works

This paper was published in WIT Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.