Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

A new design technique for sub-nanosecond delay and 200 V/ns power supply slew-tolerant floating voltage level shifters for GaN SMPS

Abstract

Dual-output gate drivers for switched-mode power supplies require low-side reference signals to be shifted to the switch-node potential. With the move to ultra-fast switching GaN converters, there is a commercial need to achieve switch-node slew-rates exceeding 100 V/ns, however, reported level shifters do not simultaneously achieve the required power supply slew immunities and sub-ns propagation delays. This paper presents a novel design technique to achieve the first floating voltage level shifters that deliver slew-rate immunities above 100 V/ns and sub-ns delay in the same circuit. Step-by-step transistor-level design methods are presented. This technique is applied to improve a reported level shifter, and experimentally validated by fabricating this level shifter in a 180 nm high-voltage CMOS process. The final level shifter has zero static power consumption, and is shown to have a sub-nanosecond delay across the whole operating range, a 200 V/ns positive power-rail slew tolerance, and infinite negative slew tolerance. The measured propagation delay decreases from 722 ps with the floating ground at -1.5 V, to 532 ps for a floating ground of 45 V, and the power consumption is 30.3 pJ per transition at 45 V. It has a figure of merit of 0.06 ns/(μ mV), which is an 1.7 × improvement on the next best reported level shifter for this type of application.</p

Similar works

This paper was published in Explore Bristol Research.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.