Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

A diversity combining antenna array for land mobile satellite communications

Abstract

A unified approach to adaptive antenna array design and transceiver signal processing architectures is proposed for the user segment of the land mobile satellite communication service. This technique is described in its conceptual form, and compared with steered antenna array configurations currently favored for this class communication system. The proposed system uses established diversity combining techniques previously developed for mobile terrestrial radio. It is suggested that a diversity-based receiver architecture would allow the coherent recombination of the multipath signal energy present at the mobile terminal site, and thereby enhance system performance for a given link budget. The cophasing of the multipath signals can be implemented using a FFSR (feedforward signal regeneration) signal-processing architecture, which uses the presence of a pilot-tone within the communications channel. On transmit, a retrodirective beam is formed towards the active satellite. The economic viability of such a transceiver is also consideredA unified approach to adaptive antenna array design and transceiver signal processing architectures is proposed for the user segment of the land mobile satellite communication service. This technique is described in its conceptual form, and compared with steered antenna array configurations currently favored for this class communication system. The proposed system uses established diversity combining techniques previously developed for mobile terrestrial radio. It is suggested that a diversity-based receiver architecture would allow the coherent recombination of the multipath signal energy present at the mobile terminal site, and thereby enhance system performance for a given link budget. The cophasing of the multipath signals can be implemented using a FFSR (feedforward signal regeneration) signal-processing architecture, which uses the presence of a pilot-tone within the communications channel. On transmit, a retrodirective beam is formed towards the active satellite. The economic viability of such a transceiver is also considere

Similar works

This paper was published in Explore Bristol Research.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.