Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Objective Optimization for Multilevel Neutral-Point-Clamped Converters with Zero-Sequence Signal Control

Abstract

When the converter level count gets higher, the space-vector pulse-width modulation (PWM) will suffer from the calculation burden for synthesising the voltage vectors and the redundant vector selection, which can be overcome by using the carrier-based PWM, as long as the carrier signal and modulation signal can be properly selected. This study proposes a new carrier-based PWM method to achieve some important control objectives in multilevel converters by adding the optimised zero-sequence signal to the reference voltage. The control objective as well as the control method for balancing the DC-link neutral point (NP) potential is presented. Meanwhile, the relationship between the NP potential and zero-sequence voltage is comprehensively analysed and an algorithm for injecting the optimised zero-sequence signal is derived. This study also investigates how to use the zero-sequence voltage to achieve the ‘two-phase’ mode operation for reducing the converter switching losses. A common mode (CM) voltage mitigation method is then proposed which effectively mitigates the CM voltage within 1/6 of the DC-link voltage. Furthermore, this study gives a simple method to directly map the reference voltage to the converter switches by using the concept of voltage level. The experimental results with a scaled 1 kW system validate the proposed NP potential control method and CM voltage mitigation method

Similar works

This paper was published in Explore Bristol Research.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.