Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Colour volumetric compression for realistic view synthesis applications

Abstract

Colour volumetric data, which is constructed from a set of multi-view images, is capable of providing realistic immersive experience. However it is not widely applicable due to its manifold increase in bandwidth. This paper presents a novel framework to achieve scalable volumetric compression. Based on wavelet transformation, data rearrangement algorithm is proposed to compact volumetric data leading to high efficiency of transformation. The colour data is rearranged using the characteristics of human visual system. A pre-processing scheme for adaptive resolution is also proposed in this paper. The low resolution overcomes the limitation of the data transmission at low bitrates, whilst the fine resolution improves the quality of the synthesised images. Results show significant improvement of the compression performance over the traditional 3D coding. Finally, effect of using residual coding is investigated in order to show a trade off between the compression and view synthesis performance.Colour volumetric data, which is constructed from a set of multi-view images, is capable of providing realistic immersive experience. However it is not widely applicable due to its manifold increase in bandwidth. This paper presents a novel framework to achieve scalable volumetric compression. Based on wavelet transformation, data rearrangement algorithm is proposed to compact volumetric data leading to high efficiency of transformation. The colour data is rearranged using the characteristics of human visual system. A pre-processing scheme for adaptive resolution is also proposed in this paper. The low resolution overcomes the limitation of the data transmission at low bitrates, whilst the fine resolution improves the quality of the synthesised images. Results show significant improvement of the compression performance over the traditional 3D coding. Finally, effect of using residual coding is investigated in order to show a trade off between the compression and view synthesis performance

Similar works

This paper was published in Explore Bristol Research.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.