Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Spatiotemporal dynamics in 2D Kolmogorov flow over large domains

Abstract

Kolmogorov flow in two dimensions – the two-dimensional (2D) Navier–Stokes equations with a sinusoidal body force – is considered over extended periodic domains to reveal localised spatiotemporal complexity. The flow response mimics the forcing at small forcing amplitudes but beyond a critical value develops a long wavelength instability. The ensuing state is described by a Cahn–Hilliard-type equation and as a result coarsening dynamics is observed for random initial data. After further bifurcations, this regime gives way to multiple attractors, some of which possess spatially localised time dependence. Co-existence of such attractors in a large domain gives rise to interesting collisional dynamics which is captured by a system of 5 (1-space and 1-time) partial differential equations (PDEs) based on a long wavelength limit. The coarsening regime reinstates itself at yet higher forcing amplitudes in the sense that only longest-wavelength solutions remain attractors. Eventually, there is one global longest-wavelength attractor which possesses two localised chaotic regions – a kink and antikink – which connect two steady one-dimensional (1D) flow regions of essentially half the domain width each. The wealth of spatiotemporal complexity uncovered presents a bountiful arena in which to study the existence of simple invariant localised solutions which presumably underpin all of the observed behaviour

Similar works

Full text

thumbnail-image

Explore Bristol Research

redirect

This paper was published in Explore Bristol Research.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.