Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Universal Behavior of Connectivity Properties in Fractal Percolation Models

Abstract

Partially motivated by the desire to better understand the connectivity phase transition in fractal percolation, we introduce and study a class of continuum fractal percolation models in dimension d >= 2. These include a scale invariant version of the classical (Poisson) Boolean model of stochastic geometry and (for d = 2) the Brownian loop soup introduced by Lawler and Werner. The models lead to random fractal sets whose connectivity properties depend on a parameter lambda. In this paper we mainly study the transition between a phase where the random fractal sets are totally disconnected and a phase where they contain connected components larger than one point. In particular, we show that there are connected components larger than one point at the unique value of lambda that separates the two phases (called the critical point). We prove that such a behavior occurs also in Mandelbrot\u27s fractal percolation in all dimensions d >= 2. Our results show that it is a generic feature, independent of the dimension or the precise definition of the model, and is essentially a consequence of scale invariance alone. Furthermore, for d = 2 we prove that the presence of connected components larger than one point implies the presence of a unique, unbounded, connected component

Similar works

Full text

thumbnail-image

Chalmers Research

redirect
Last time updated on 07/05/2019

This paper was published in Chalmers Research.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.