Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Minimum Energy to Send k Bits Over Multiple-Antenna Fading Channels

Abstract

This paper investigates the minimum energy required to transmit k information bits with a given reliability over a multiple-antenna Rayleigh block-fading channel, with and without channel state information (CSI) at the receiver. No feedback is assumed. It is well known that the ratio between the minimum energy per bit and the noise level converges to 1.59 dB as k goes to infinity, regardless of whether CSI is available at the receiver or not. This paper shows that the lack of CSI at the receiver causes a slowdown in the speed of convergence to 1.59 dB as k -> infinity compared with the case of perfect receiver CSI. Specifically, we show that, in the no-CSI case, the gap to 1/root k dB is proportional to ((log k)/ k)(1/3), whereas when perfect CSI is available at the receiver, this gap is proportional to lksa. In both cases, the gap to -1.59 dB is independent of the number of transmit antennas and of the channel\u27s coherence time. Numerically, we observe that, when the receiver is equipped with a single antenna, to achieve an energy per bit of 1.5 dB in the no-CSI case, one needs to transmit at least 7 x 10(7) information bits, whereas 6 x 10(4) bits suffice for the case of perfect CSI at the receiver

Similar works

Full text

thumbnail-image

Chalmers Research

redirect
Last time updated on 07/05/2019

This paper was published in Chalmers Research.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.