Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Accelerating delayed-acceptance Markov chain Monte Carlo algorithms

Abstract

Delayed-acceptance Markov chain Monte Carlo (DA-MCMC) samples from a probability distribution via a two-stages version of the Metropolis-Hastings algorithm, by combining the target distribution with a "surrogate" (i.e. an approximate and computationally cheaper version) of said distribution. DA-MCMC accelerates MCMC sampling in complex applications, while still targeting the exact distribution. We design a computationally faster, albeit approximate, DA-MCMC algorithm. We consider parameter inference in a Bayesian setting where a surrogate likelihood function is introduced in the delayed-acceptance scheme. When the evaluation of the likelihood function is computationally intensive, our scheme produces a 2-4 times speed-up, compared to standard DA-MCMC. However, the acceleration is highly problem dependent. Inference results for the standard delayed-acceptance algorithm and our approximated version are similar, indicating that our algorithm can return reliable Bayesian inference. As a computationally intensive case study, we introduce a novel stochastic differential equation model for protein folding data

Similar works

Full text

thumbnail-image

Chalmers Research

redirect
Last time updated on 07/05/2019

This paper was published in Chalmers Research.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.