Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Multiscale differential riccati equations for linear quadratic regulator problems

Abstract

We consider approximations to the solutions of differential Riccati equations in the context of linear quadratic regulator problems, where the state equation is governed by a multiscale operator. Similarly to elliptic and parabolic problems, standard finite element discretizations perform poorly in this setting unless the grid resolves the fine-scale features of the problem. This results in unfeasible amounts of computation and high memory requirements. In this paper, we demonstrate how the localized orthogonal decomposition method may be used to acquire accurate results also for coarse discretizations, at the low cost of solving a series of small, localized elliptic problems. We prove second-order convergence (except for a logarithmic factor) in the L2operator norm and first-order convergence in the corresponding energy norm. These results are both independent of the multiscale variations in the state equation. In addition, we provide a detailed derivation of the fully discrete matrix-valued equations and show how they can be handled in a low-rank setting for large-scale computations. In connection to this, we also show how to efficiently compute the relevant operator-norm errors. Finally, our theoretical results are validated by several numerical experiments

Similar works

This paper was published in Chalmers Research.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.