Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Hierarchical Compressed Sensing

Abstract

Compressed sensing is a paradigm within signal processing that provides the means for recovering structured signals from linear measurements in a highly efficient manner. Originally devised for the recovery of sparse signals, it has become clear that a similar methodology would also carry over to a wealth of other classes of structured signals. In this work, we provide an overview over the theory of compressed sensing for a particularly rich family of such signals, namely those of hierarchically structured signals. Examples of such signals are constituted by blocked vectors, with only few non-vanishing sparse blocks. We present recovery algorithms based on efficient hierarchical hard thresholding. The algorithms are guaranteed to converge, in a stable fashion with respect to both measurement noise and model mismatches, to the correct solution provided the measurement map acts isometrically restricted to the signal class. We then provide a series of results establishing the required condition for large classes of measurement ensembles. Building upon this machinery, we sketch practical applications of this framework in machine-type communications and quantum tomography

Similar works

Full text

thumbnail-image

Chalmers Research

redirect
Last time updated on 19/11/2022

This paper was published in Chalmers Research.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.