Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Simulating Tail Probabilities in GI/GI.1 Queues and Insurance Risk Processes with Subexponentail Distributions

Abstract

This paper deals with estimating small tail probabilities of thesteady-state waiting time in a GI/GI/1 queue with heavy-tailed (subexponential) service times. The problem of estimating infinite horizon ruin probabilities in insurance risk processes with heavy-tailed claims can be transformed into the same framework. It is well-known that naive simulation is ineffective for estimating small probabilities and special fast simulation techniques like importance sampling, multilevel splitting, etc., have to be used. Though there exists a vast amount of literature on the rare event simulation of queuing systems and networks with light-tailed distributions, previous fast simulation techniques for queues with subexponential service times have been confined to the M/GI/1 queue. The general approach is to use the Pollaczek-Khintchine transformation to convert the problem into that of estimating the tail distribution of a geometric sum of independent subexponential random variables. However, no such useful transformation exists when one goes from Poisson arrivals to general interarrival-time distributions. We describe and evaluate an approach that is based on directly simulating the random walk associated with the waiting-time process of the GI/GI/1 queue, using a change of measure called delayed subexponential twisting -an importance sampling idea recently developed and found useful in the context of M/GI/1 heavy-tailed simulations

Similar works

This paper was published in VU Research Portal.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.