Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Informative and misinformative interactions in a school of fish

Abstract

Quantifying distributed information processing is crucial to understanding collective motion in animal groups. Recent studies have begun to apply rigorous methods based on information theory to quantify such distributed computation. Following this perspective, we use transfer entropy to quantify dynamic information flows locally in space and time across a school of fish during directional changes around a circular tank, i.e., U-turns. This analysis reveals peaks in information flows during collective U-turns and identifies two different flows: an informative flow (positive transfer entropy) from fish that have already turned to fish that are turning, and a misinformative flow (negative transfer entropy) from fish that have not turned yet to fish that are turning. We also reveal that the information flows are related to relative position and alignment between fish and identify spatial patterns of information and misinformation cascades. This study offers several methodological contributions and we expect further application of these methodologies to reveal intricacies of self-organisation in other animal groups and active matter in general

Similar works

Full text

thumbnail-image

Western Sydney ResearchDirect

redirect
Last time updated on 30/11/2020

This paper was published in Western Sydney ResearchDirect.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.