Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

A novel adaptive back propagation neural network-unscented Kalman filtering algorithm for accurate lithium-ion battery state of charge estimation.

Abstract

Accurate State of Charge (SOC) estimation for lithium-ion batteries has great significance with respect to the correct decision-making and safety control. In this research, an improved second-order-polarization equivalent circuit (SO-PEC) modelling method is proposed. In the process of estimating the SOC, a joint estimation algorithm, the Adaptive Back Propagation Neural Network and Unscented Kalman Filtering algorithm (ABP-UKF), is proposed. It combines the advantages of the robust learning rate in the Back Propagation (BP) neural network and the linearization error reduction in the Unscented Kalman Filtering (UKF) algorithm. In the BP neural network part, the self-adjustment of the learning factor accompanies the whole estimation process, and the improvement of the self-adjustment algorithm corrects the shortcomings of the UKF algorithm. In the verification part, the model is validated using a segmented double-exponential fit. Using the Ampere-hour integration method as the reference value, the estimation results of the UKF algorithm and the Back Propagation Neural Network and Unscented Kalman Filtering (BP-UKF) algorithm are compared, and the estimation accuracy of the proposed method is improved by 1.29% under the Hybrid Pulse Power Characterization (HPPC) working conditions, 1.28% under the Beijing Bus Dynamic Stress Test (BBDST) working conditions, and 2.24% under the Dynamic Stress Test (DST) working conditions. The proposed ABP-UKF algorithm has good results in estimating the SOC of lithium-ion batteries and will play an important role in the high-precision energy management process

Similar works

Full text

thumbnail-image

Open Access Institutional Repository at Robert Gordon University

redirect
Last time updated on 23/09/2022

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.