Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Accurate genome-wide predictions of spatio-temporal gene expression during embryonic development

Abstract

Comprehensive information on the timing and location of gene expression is fundamental to our understanding of embryonic development and tissue formation. While high-throughput in situ hybridization projects provide invaluable information about developmental gene expression patterns for model organisms like Drosophila, the output of these experiments is primarily qualitative, and a high proportion of protein coding genes and most non-coding genes lack any annotation. Accurate data-centric predictions of spatio-temporal gene expression will therefore complement current in situ hybridization efforts. Here, we applied a machine learning approach by training models on all public gene expression and chromatin data, even from whole-organism experiments, to provide genome-wide, quantitative spatiotemporal predictions for all genes. We developed structured in silico nano-dissection, a computational approach that predicts gene expression in >200 tissue-developmental stages. The algorithm integrates expression signals from a compendium of 6,378 genome-wide expression and chromatin profiling experiments in a cell lineage-aware fashion. We systematically evaluated our performance via cross-validation and experimentally confirmed 22 new predictions for four different embryonic tissues. The model also predicts complex, multi-tissue expression and developmental regulation with high accuracy. We further show the potential of applying these genome-wide predictions to extract tissue specificity signals from non-tissue-dissected experiments, and to prioritize tissues and stages for disease modeling. This resource, together with the exploratory tools are freely available at our webserver http://find.princeton.edu, which provides a valuable tool for a range of applications, from predicting spatio-temporal expression patterns to recognizing tissue signatures from differential gene expression profiles.Fil: Zhou, Jian*. University of Princeton; Estados UnidosFil: Schor, Ignacio Esteban. European Molecular Biology Laboratory; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Yao, Victoria. University of Princeton; Estados UnidosFil: Theesfeld, Chandra L.. University of Princeton; Estados UnidosFil: Marco-Ferreres, Raquel. European Molecular Biology Laboratory; AlemaniaFil: Tadych, Alicja. University of Princeton; Estados UnidosFil: Furlong, Eileen E. M.. European Molecular Biology Laboratory; AlemaniaFil: Troyanskaya, Olga G.. University of Princeton; Estados Unido

Similar works

This paper was published in CONICET Digital.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.