Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Stochastic description for open quantum systems

Abstract

A linear quantum Brownian motion model with a general spectral density function is considered. In the framework of the influence functional formalism, a Langevin equation can be introduced to describe the system's fully quantum properties even beyond the semiclassical regime. In particular, we show that the reduced Wigner function for the system can be formally written as a double average over both the initial conditions and the stochastic source of the Langevin equation. This is exploited to provide a derivation of the master equation for the reduced density matrix alternative to those existing in the literature. Furthermore, we prove that all the correlation functions obtained in the context of the stochastic description associated to the Langevin equation actually correspond to quantum correlation functions for system observables. In doing so, we also compute the closed time path generating functional of the open system. © 2002 Elsevier Science B.V. All rights reserved.Fil: Calzetta, Esteban Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Roura, Albert. Universidad de Barcelona; EspañaFil: Verdaguer, Enric. Universidad de Barcelona; Españ

Similar works

This paper was published in CONICET Digital.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.