Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Clothoid-Based Three-Dimensional Curve for Attitude Planning

Abstract

This work was supported by Generalitat Valenciana under the postdoctoral grant APOSTD/2017/055. The authors are also grateful to the financial support of Spanish Ministry of Economy and European Union, grant DPI2016-81002-R (AEI/FEDER, UE). Thanks to Sergio Garcia-Nieto and Franklin Samaniego for their help to setup the simulator.Girbés, V.; Vanegas, G.; Armesto Ángel, L. (2019). Clothoid-Based Three-Dimensional Curve for Attitude Planning. Journal of Guidance Control and Dynamics. 42(8):1886-1898. https://doi.org/10.2514/1.G00355118861898428Goerzen, C., Kong, Z., & Mettler, B. (2009). A Survey of Motion Planning Algorithms from the Perspective of Autonomous UAV Guidance. Journal of Intelligent and Robotic Systems, 57(1-4), 65-100. doi:10.1007/s10846-009-9383-1Zeng, Z., Lian, L., Sammut, K., He, F., Tang, Y., & Lammas, A. (2015). A survey on path planning for persistent autonomy of autonomous underwater vehicles. Ocean Engineering, 110, 303-313. doi:10.1016/j.oceaneng.2015.10.007Zhai, R., Zhou, Z., Zhang, W., Sang, S., & Li, P. (2014). Control and navigation system for a fixed-wing unmanned aerial vehicle. AIP Advances, 4(3), 031306. doi:10.1063/1.4866169Rubio Hervas, J., Reyhanoglu, M., Tang, H., & Kayacan, E. (2016). Nonlinear control of fixed-wing UAVs in presence of stochastic winds. Communications in Nonlinear Science and Numerical Simulation, 33, 57-69. doi:10.1016/j.cnsns.2015.08.026Bhandari, S., Lu, Y., Raheja, A., & Tang, D. (2016). Nonlinear Control of a Fixed-Wing UAV using Support Vector Machine. AIAA Guidance, Navigation, and Control Conference. doi:10.2514/6.2016-0107Eren, U., Prach, A., Koçer, B. B., Raković, S. V., Kayacan, E., & Açıkmeşe, B. (2017). Model Predictive Control in Aerospace Systems: Current State and Opportunities. Journal of Guidance, Control, and Dynamics, 40(7), 1541-1566. doi:10.2514/1.g002507Kan, E.-M., Lim, M.-H., Yeo, S.-P., Ho, J.-S., & Shao, Z. (2011). Contour Based Path Planning with B-Spline Trajectory Generation for Unmanned Aerial Vehicles (UAVs) over Hostile Terrain. Journal of Intelligent Learning Systems and Applications, 03(03), 122-130. doi:10.4236/jilsa.2011.33014Jung, D., & Tsiotras, P. (2013). On-Line Path Generation for Unmanned Aerial Vehicles Using B-Spline Path Templates. Journal of Guidance, Control, and Dynamics, 36(6), 1642-1653. doi:10.2514/1.60780De Dilectis, F., Mortari, D., & Zanetti, R. (2016). Bézier Description of Space Trajectories. Journal of Guidance, Control, and Dynamics, 39(11), 2535-2539. doi:10.2514/1.g000719Wang, X., Jiang, P., Li, D., & Sun, T. (2017). Curvature Continuous and Bounded Path Planning for Fixed-Wing UAVs. Sensors, 17(9), 2155. doi:10.3390/s17092155Rikovitch, N., & Sharf, I. (2013). Kinodynamic Motion Planning for UAVs: A Minimum Energy Approach. AIAA Guidance, Navigation, and Control (GNC) Conference. doi:10.2514/6.2013-5231Ataei, M., & Yousefi-Koma, A. (2015). Three-dimensional optimal path planning for waypoint guidance of an autonomous underwater vehicle. Robotics and Autonomous Systems, 67, 23-32. doi:10.1016/j.robot.2014.10.007Gonzalez, D., Perez, J., Milanes, V., & Nashashibi, F. (2016). A Review of Motion Planning Techniques for Automated Vehicles. IEEE Transactions on Intelligent Transportation Systems, 17(4), 1135-1145. doi:10.1109/tits.2015.2498841ShinD. H.SinghS. “Path Generation for Robot Vehicles Using Composite Clothoid Segments,” Robotics Inst. Tech. Rept. CMU-RI-TR-90-31, Pittsburgh, PA, 1990.Tounsi, M., & Le Corre, J. F. (1996). Trajectory generation for mobile robots. Mathematics and Computers in Simulation, 41(3-4), 367-376. doi:10.1016/0378-4754(95)00085-2LevienR. “The Euler Spiral: A Mathematical History,” Tech. Rept. UCB/EECS-2008-111, EECS Department, Univ. of California, Berkeley, CA, 2008.Fraichard, T., & Scheuer, A. (2004). From Reeds and Shepp’s to Continuous-Curvature Paths. IEEE Transactions on Robotics, 20(6), 1025-1035. doi:10.1109/tro.2004.833789Girbés, V., Armesto, L., & Tornero, J. (2014). Path following hybrid control for vehicle stability applied to industrial forklifts. Robotics and Autonomous Systems, 62(6), 910-922. doi:10.1016/j.robot.2014.01.004Armesto, L., Girbés, V., Vincze, M., Olufs, S., & Muñoz-Benavent, P. (2012). Mobile Robot Obstacle Avoidance Based on Quasi-Holonomic Smooth Paths. Lecture Notes in Computer Science, 244-255. doi:10.1007/978-3-642-32527-4_22Wan, T. R., Tang, W., & Chen, H. (2011). A real-time 3D motion planning and simulation scheme for nonholonomic systems. Simulation Modelling Practice and Theory, 19(1), 423-439. doi:10.1016/j.simpat.2010.08.002Wilburn, J. N., Perhinschi, M. G., & Wilburn, B. K. (2013). Implementation of Composite Clothoid Paths for Continuous Curvature Trajectory Generation for UAVs. AIAA Guidance, Navigation, and Control (GNC) Conference. doi:10.2514/6.2013-5230Harary, G., & Tal, A. (2012). 3D Euler spirals for 3D curve completion. Computational Geometry, 45(3), 115-126. doi:10.1016/j.comgeo.2011.10.001BanchoffT.LovettS. S. T., Differential Geometry of Curves and Surfaces, 2nd ed., Chapman and Hall/CRC Press, Florida, 2015, pp. 71–102, Chap. 3.Meek, D. S., & Walton, D. J. (2004). A note on finding clothoids. Journal of Computational and Applied Mathematics, 170(2), 433-453. doi:10.1016/j.cam.2003.12.047Marzbani, H., Jazar, R. N., & Fard, M. (2015). Better Road Design Using Clothoids. Lecture Notes in Mobility, 25-40. doi:10.1007/978-3-319-17999-5_3Marzbani, H., Simic, M., Fard, M., & Jazar, R. N. (2015). Better Road Design for Autonomous Vehicles Using Clothoids. Smart Innovation, Systems and Technologies, 265-278. doi:10.1007/978-3-319-19830-9_24Gim, S., Adouane, L., Lee, S., & Dérutin, J.-P. (2017). Clothoids Composition Method for Smooth Path Generation of Car-Like Vehicle Navigation. Journal of Intelligent & Robotic Systems, 88(1), 129-146. doi:10.1007/s10846-017-0531-8Mielenz, K. D. (2000). Computation of Fresnel integrals. II. Journal of Research of the National Institute of Standards and Technology, 105(4), 589. doi:10.6028/jres.105.049Narayan, S. (2014). Approximating Cornu spirals by arc splines. Journal of Computational and Applied Mathematics, 255, 789-804. doi:10.1016/j.cam.2013.06.038Chen, Y., Cai, Y., Zheng, J., & Thalmann, D. (2017). Accurate and Efficient Approximation of Clothoids Using Bézier Curves for Path Planning. IEEE Transactions on Robotics, 33(5), 1242-1247. doi:10.1109/tro.2017.2699670Knuth, D. E. (1979). Mathematical typography. Bulletin of the American Mathematical Society, 1(2), 337-372. doi:10.1090/s0273-0979-1979-14598-1KostovV.Degtiariova-KostovaE. “Some Properties of Clothoids,” INRIA Tech. Rept. RR-2752, Cedex, France, 1995.Velasco-Carrau, J., García-Nieto, S., Salcedo, J. V., & Bishop, R. H. (2016). Multi-Objective Optimization for Wind Estimation and Aircraft Model Identification. Journal of Guidance, Control, and Dynamics, 39(2), 372-389. doi:10.2514/1.g00129

Similar works

Full text

thumbnail-image

RiuNet

redirect
Last time updated on 08/04/2021

This paper was published in RiuNet.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.