Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Multi-Agent Systems and Complex Networks: Review and Applications in Systems Engineering

Abstract

[EN] Systems engineering is an ubiquitous discipline of Engineering overlapping industrial, chemical, mechanical, manufacturing, control, software, electrical, and civil engineering. It provides tools for dealing with the complexity and dynamics related to the optimisation of physical, natural, and virtual systems management. This paper presents a review of how multi-agent systems and complex networks theory are brought together to address systems engineering and management problems. The review also encompasses current and future research directions both for theoretical fundamentals and applications in the industry. This is made by considering trends such as mesoscale, multiscale, and multilayer networks along with the state-of-art analysis on network dynamics and intelligent networks. Critical and smart infrastructure, manufacturing processes, and supply chain networks are instances of research topics for which this literature review is highly relevant.This research was funded by the EPSRC and BT Prosperity Partnership project: Next Generation Converged Digital Infrastructure, grant number EP/R004935/1.Herrera, M.; Pérez-Hernández, M.; Parlikad, AK.; Izquierdo Sebastián, J. (2020). Multi-Agent Systems and Complex Networks: Review and Applications in Systems Engineering. Processes. 8(3):1-29. https://doi.org/10.3390/pr803031212983Strogatz, S. H. (2001). Exploring complex networks. Nature, 410(6825), 268-276. doi:10.1038/35065725Winkler, J., Dueñas-Osorio, L., Stein, R., & Subramanian, D. (2011). Interface Network Models for Complex Urban Infrastructure Systems. Journal of Infrastructure Systems, 17(4), 138-150. doi:10.1061/(asce)is.1943-555x.0000068Nekovee, M., Moreno, Y., Bianconi, G., & Marsili, M. (2007). Theory of rumour spreading in complex social networks. Physica A: Statistical Mechanics and its Applications, 374(1), 457-470. doi:10.1016/j.physa.2006.07.017Wong, A. S. Y., & Huck, W. T. S. (2017). Grip on complexity in chemical reaction networks. Beilstein Journal of Organic Chemistry, 13, 1486-1497. doi:10.3762/bjoc.13.147Gosak, M., Markovič, R., Dolenšek, J., Slak Rupnik, M., Marhl, M., Stožer, A., & Perc, M. (2018). Network science of biological systems at different scales: A review. Physics of Life Reviews, 24, 118-135. doi:10.1016/j.plrev.2017.11.003Van Steen, M., & Tanenbaum, A. S. (2016). A brief introduction to distributed systems. Computing, 98(10), 967-1009. doi:10.1007/s00607-016-0508-7Yang, T., Yi, X., Wu, J., Yuan, Y., Wu, D., Meng, Z., … Johansson, K. H. (2019). A survey of distributed optimization. Annual Reviews in Control, 47, 278-305. doi:10.1016/j.arcontrol.2019.05.006Charyyev, B., & Gunes, M. H. (2019). Complex network of United States migration. Computational Social Networks, 6(1). doi:10.1186/s40649-019-0061-6Del Vicario, M., Bessi, A., Zollo, F., Petroni, F., Scala, A., Caldarelli, G., … Quattrociocchi, W. (2016). The spreading of misinformation online. Proceedings of the National Academy of Sciences, 113(3), 554-559. doi:10.1073/pnas.1517441113Manuel, P. (2010). Computational Aspects of Carbon and Boron Nanotubes. Molecules, 15(12), 8709-8722. doi:10.3390/molecules15128709Hinkelmann, F., Murrugarra, D., Jarrah, A. S., & Laubenbacher, R. (2010). A Mathematical Framework for Agent Based Models of Complex Biological Networks. Bulletin of Mathematical Biology, 73(7), 1583-1602. doi:10.1007/s11538-010-9582-8Zhao, J., Yu, H., Luo, J., Cao, Z. W., & Li, Y. (2006). Complex networks theory for analyzing metabolic networks. Chinese Science Bulletin, 51(13), 1529-1537. doi:10.1007/s11434-006-2015-2Borer, B., Ataman, M., Hatzimanikatis, V., & Or, D. (2019). Modeling metabolic networks of individual bacterial agents in heterogeneous and dynamic soil habitats (IndiMeSH). PLOS Computational Biology, 15(6), e1007127. doi:10.1371/journal.pcbi.1007127Morstyn, T., Hredzak, B., & Agelidis, V. G. (2018). Network Topology Independent Multi-Agent Dynamic Optimal Power Flow for Microgrids With Distributed Energy Storage Systems. IEEE Transactions on Smart Grid, 9(4), 3419-3429. doi:10.1109/tsg.2016.2631600Kiesling, E., Günther, M., Stummer, C., & Wakolbinger, L. M. (2011). Agent-based simulation of innovation diffusion: a review. Central European Journal of Operations Research, 20(2), 183-230. doi:10.1007/s10100-011-0210-yNair, A. S., Hossen, T., Campion, M., Selvaraj, D. F., Goveas, N., Kaabouch, N., & Ranganathan, P. (2018). Multi-Agent Systems for Resource Allocation and Scheduling in a Smart Grid. Technology and Economics of Smart Grids and Sustainable Energy, 3(1). doi:10.1007/s40866-018-0052-yBrintrup, A., Wang, Y., & Tiwari, A. (2017). Supply Networks as Complex Systems: A Network-Science-Based Characterization. IEEE Systems Journal, 11(4), 2170-2181. doi:10.1109/jsyst.2015.2425137Guimerà, R., & Nunes Amaral, L. A. (2005). Functional cartography of complex metabolic networks. Nature, 433(7028), 895-900. doi:10.1038/nature03288Zio, E. (2007). From complexity science to reliability efficiency: a new way of looking at complex network systems and critical infrastructures. International Journal of Critical Infrastructures, 3(3/4), 488. doi:10.1504/ijcis.2007.014122Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684), 440-442. doi:10.1038/30918Barabási, A.-L. (2009). Scale-Free Networks: A Decade and Beyond. Science, 325(5939), 412-413. doi:10.1126/science.1173299Viana, M. P., Strano, E., Bordin, P., & Barthelemy, M. (2013). The simplicity of planar networks. Scientific Reports, 3(1). doi:10.1038/srep03495Boeing, G. (2018). Planarity and street network representation in urban form analysis. Environment and Planning B: Urban Analytics and City Science, 47(5), 855-869. doi:10.1177/2399808318802941Diet, A., & Barthelemy, M. (2018). Towards a classification of planar maps. Physical Review E, 98(6). doi:10.1103/physreve.98.062304Strano, E., Nicosia, V., Latora, V., Porta, S., & Barthélemy, M. (2012). Elementary processes governing the evolution of road networks. Scientific Reports, 2(1). doi:10.1038/srep00296Giudicianni, C., Di Nardo, A., Di Natale, M., Greco, R., Santonastaso, G., & Scala, A. (2018). Topological Taxonomy of Water Distribution Networks. Water, 10(4), 444. doi:10.3390/w10040444Girvan, M., & Newman, M. E. J. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Sciences, 99(12), 7821-7826. doi:10.1073/pnas.122653799Rieckmann, J. C., Geiger, R., Hornburg, D., Wolf, T., Kveler, K., Jarrossay, D., … Meissner, F. (2017). Social network architecture of human immune cells unveiled by quantitative proteomics. Nature Immunology, 18(5), 583-593. doi:10.1038/ni.3693Kurvers, R. H. J. M., Krause, J., Croft, D. P., Wilson, A. D. M., & Wolf, M. (2014). The evolutionary and ecological consequences of animal social networks: emerging issues. Trends in Ecology & Evolution, 29(6), 326-335. doi:10.1016/j.tree.2014.04.002Brentan, B., Campbell, E., Goulart, T., Manzi, D., Meirelles, G., Herrera, M., … Luvizotto, E. (2018). Social Network Community Detection and Hybrid Optimization for Dividing Water Supply into District Metered Areas. Journal of Water Resources Planning and Management, 144(5), 04018020. doi:10.1061/(asce)wr.1943-5452.0000924Salvador Palau, A., Liang, Z., Lütgehetmann, D., & Parlikad, A. K. (2019). Collaborative prognostics in Social Asset Networks. Future Generation Computer Systems, 92, 987-995. doi:10.1016/j.future.2018.02.011Lee, S. H., Cucuringu, M., & Porter, M. A. (2014). Density-based and transport-based core-periphery structures in networks. Physical Review E, 89(3). doi:10.1103/physreve.89.032810Verma, T., Russmann, F., Araújo, N. A. M., Nagler, J., & Herrmann, H. J. (2016). Emergence of core–peripheries in networks. Nature Communications, 7(1). doi:10.1038/ncomms10441Opsahl, T., Agneessens, F., & Skvoretz, J. (2010). Node centrality in weighted networks: Generalizing degree and shortest paths. Social Networks, 32(3), 245-251. doi:10.1016/j.socnet.2010.03.006Freeman, L. C. (1977). A Set of Measures of Centrality Based on Betweenness. Sociometry, 40(1), 35. doi:10.2307/3033543Wuchty, S., & Stadler, P. F. (2003). Centers of complex networks. Journal of Theoretical Biology, 223(1), 45-53. doi:10.1016/s0022-5193(03)00071-7Bonacich, P. (1972). Factoring and weighting approaches to status scores and clique identification. The Journal of Mathematical Sociology, 2(1), 113-120. doi:10.1080/0022250x.1972.9989806Brin, S., & Page, L. (2012). Reprint of: The anatomy of a large-scale hypertextual web search engine. Computer Networks, 56(18), 3825-3833. doi:10.1016/j.comnet.2012.10.007Katz, L. (1953). A new status index derived from sociometric analysis. Psychometrika, 18(1), 39-43. doi:10.1007/bf02289026Serrano, M. Á., & Boguñá, M. (2006). Clustering in complex networks. I. General formalism. Physical Review E, 74(5). doi:10.1103/physreve.74.056114Suchecki, K., Eguíluz, V. M., & San Miguel, M. (2005). Voter model dynamics in complex networks: Role of dimensionality, disorder, and degree distribution. Physical Review E, 72(3). doi:10.1103/physreve.72.036132Noldus, R., & Van Mieghem, P. (2015). Assortativity in complex networks. Journal of Complex Networks, 3(4), 507-542. doi:10.1093/comnet/cnv005Albert, R., & Barabási, A.-L. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74(1), 47-97. doi:10.1103/revmodphys.74.47Gao, J., Barzel, B., & Barabási, A.-L. (2016). Universal resilience patterns in complex networks. Nature, 530(7590), 307-312. doi:10.1038/nature16948Li, D., Zhang, Q., Zio, E., Havlin, S., & Kang, R. (2015). Network reliability analysis based on percolation theory. Reliability Engineering & System Safety, 142, 556-562. doi:10.1016/j.ress.2015.05.021Gao, J., Liu, X., Li, D., & Havlin, S. (2015). Recent Progress on the Resilience of Complex Networks. Energies, 8(10), 12187-12210. doi:10.3390/en81012187Chen, X. G. (2017). A novel reliability estimation method of complex network based on Monte Carlo. Cluster Computing, 20(2), 1063-1073. doi:10.1007/s10586-017-0826-3Kroese, D. P., Brereton, T., Taimre, T., & Botev, Z. I. (2014). Why the Monte Carlo method is so important today. WIREs Computational Statistics, 6(6), 386-392. doi:10.1002/wics.1314Newman, M. E. J., & Ziff, R. M. (2001). Fast Monte Carlo algorithm for site or bond percolation. Physical Review E, 64(1). doi:10.1103/physreve.64.016706Li, D., Fu, B., Wang, Y., Lu, G., Berezin, Y., Stanley, H. E., & Havlin, S. (2014). Percolation transition in dynamical traffic network with evolving critical bottlenecks. Proceedings of the National Academy of Sciences, 112(3), 669-672. doi:10.1073/pnas.1419185112Carvalho, R., Buzna, L., Bono, F., Masera, M., Arrowsmith, D. K., & Helbing, D. (2014). Resilience of Natural Gas Networks during Conflicts, Crises and Disruptions. PLoS ONE, 9(3), e90265. doi:10.1371/journal.pone.0090265Torres, J. M., Duenas-Osorio, L., Li, Q., & Yazdani, A. (2017). Exploring Topological Effects on Water Distribution System Performance Using Graph Theory and Statistical Models. Journal of Water Resources Planning and Management, 143(1), 04016068. doi:10.1061/(asce)wr.1943-5452.0000709Chen, Y., Li, Y., Li, W., Wu, X., Cai, Y., Cao, Y., & Rehtanz, C. (2018). Cascading Failure Analysis of Cyber Physical Power System With Multiple Interdependency and Control Threshold. IEEE Access, 6, 39353-39362. doi:10.1109/access.2018.2855441Hui, K.-P. (2007). Monte Carlo Network Reliability Ranking Estimation. IEEE Transactions on Reliability, 56(1), 50-57. doi:10.1109/tr.2006.890898Piraveenan, M., Prokopenko, M., & Hossain, L. (2013). Percolation Centrality: Quantifying Graph-Theoretic Impact of Nodes during Percolation in Networks. PLoS ONE, 8(1), e53095. doi:10.1371/journal.pone.0053095Liao, H., Mariani, M. S., Medo, M., Zhang, Y.-C., & Zhou, M.-Y. (2017). Ranking in evolving complex networks. Physics Reports, 689, 1-54. doi:10.1016/j.physrep.2017.05.001Morone, F., & Makse, H. A. (2015). Influence maximization in complex networks through optimal percolation. Nature, 524(7563), 65-68. doi:10.1038/nature14604Lü, L., Chen, D., Ren, X.-L., Zhang, Q.-M., Zhang, Y.-C., & Zhou, T. (2016). Vital nodes identification in complex networks. Physics Reports, 650, 1-63. doi:10.1016/j.physrep.2016.06.007Jalili, M., & Yu, X. (2016). Enhancement of Synchronizability in Networks with Community Structure through Adding Efficient Inter-Community Links. IEEE Transactions on Network Science and Engineering, 3(2), 106-116. doi:10.1109/tnse.2016.2566615Jalili, M., & Perc, M. (2017). Information cascades in complex networks. Journal of Complex Networks. doi:10.1093/comnet/cnx019Chen, D., Lü, L., Shang, M.-S., Zhang, Y.-C., & Zhou, T. (2012). Identifying influential nodes in complex networks. Physica A: Statistical Mechanics and its Applications, 391(4), 1777-1787. doi:10.1016/j.physa.2011.09.017Lawyer, G. (2015). Understanding the influence of all nodes in a network. Scientific Reports, 5(1). doi:10.1038/srep08665Zhang, Z.-K., Liu, C., Zhan, X.-X., Lu, X., Zhang, C.-X., & Zhang, Y.-C. (2016). Dynamics of information diffusion and its applications on complex networks. Physics Reports, 651, 1-34. doi:10.1016/j.physrep.2016.07.002Dai, X., Hu, M., Tian, W., Xie, D., & Hu, B. (2016). Application of Epidemiology Model on Complex Networks in Propagation Dynamics of Airspace Congestion. PLOS ONE, 11(6), e0157945. doi:10.1371/journal.pone.0157945Pastor-Satorras, R., Castellano, C., Van Mieghem, P., & Vespignani, A. (2015). Epidemic processes in complex networks. Reviews of Modern Physics, 87(3), 925-979. doi:10.1103/revmodphys.87.925Bardet, J.-P., & Little, R. (2014). Epidemiology of urban water distribution systems. Water Resources Research, 50(8), 6447-6465. doi:10.1002/2013wr015017Ding, L., Li, K., Zhou, Y., & Love, P. E. D. (2017). An IFC-inspection process model for infrastructure projects: Enabling real-time quality monitoring and control. Automation in Construction, 84, 96-110. doi:10.1016/j.autcon.2017.08.029Kim, H., & Anderson, R. (2012). Temporal node centrality in complex networks. Physical Review E, 85(2). doi:10.1103/physreve.85.026107Braha, D., & Bar-Yam, Y. (2006). From centrality to temporary fame: Dynamic centrality in complex networks. Complexity, 12(2), 59-63. doi:10.1002/cplx.20156Shekhtman, L. M., Danziger, M. M., & Havlin, S. (2016). Recent advances on failure and recovery in networks of networks. Chaos, Solitons & Fractals, 90, 28-36. doi:10.1016/j.chaos.2016.02.002Kivela, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y., & Porter, M. A. (2014). Multilayer networks. Journal of Complex Networks, 2(3), 203-271. doi:10.1093/comnet/cnu016De Domenico, M., Solé-Ribalta, A., Cozzo, E., Kivelä, M., Moreno, Y., Porter, M. A., … Arenas, A. (2013). Mathematical Formulation of Multilayer Networks. Physical Review X, 3(4). doi:10.1103/physrevx.3.041022Rahmede, C., Iacovacci, J., Arenas, A., & Bianconi, G. (2017). Centralities of nodes and influences of layers in large multiplex networks. Journal of Complex Networks, 6(5), 733-752. doi:10.1093/comnet/cnx050Gómez, S., Díaz-Guilera, A., Gómez-Gardeñes, J., Pérez-Vicente, C. J., Moreno, Y., & Arenas, A. (2013). Diffusion Dynamics on Multiplex Networks. Physical Review Letters, 110(2). doi:10.1103/physrevlett.110.028701Zhao, D., Li, L., Peng, H., Luo, Q., & Yang, Y. (2014). Multiple routes transmitted epidemics on multiplex networks. Physics Letters A, 378(10), 770-776. doi:10.1016/j.physleta.2014.01.014De Domenico, M., Granell, C., Porter, M. A., & Arenas, A. (2016). The physics of spreading processes in multilayer networks. Nature Physics, 12(10), 901-906. doi:10.1038/nphys3865Cellai, D., López, E., Zhou, J., Gleeson, J. P., & Bianconi, G. (2013). Percolation in multiplex networks with overlap. Physical Review E, 88(5). doi:10.1103/physreve.88.052811Osat, S., Faqeeh, A., & Radicchi, F. (2017). Optimal percolation on multiplex networks. Nature Communications, 8(1). doi:10.1038/s41467-017-01442-2He, W., Chen, G., Han, Q.-L., Du, W., Cao, J., & Qian, F. (2017). Multiagent Systems on Multilayer Networks: Synchronization Analysis and Network Design. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47(7), 1655-1667. doi:10.1109/tsmc.2017.2659759Milanovic, J. V., & Zhu, W. (2018). Modeling of Interconnected Critical Infrastructure Systems Using Complex Network Theory. IEEE Transactions on Smart Grid, 9(5), 4637-4648. doi:10.1109/tsg.2017.2665646Nwana, H. S. (1996). Software agents: an overview. The Knowledge Engineering Review, 11(3), 205-244. doi:10.1017/s026988890000789xMacal, C. M., & North, M. J. (2009). Agent-based modeling and simulation. Proceedings of the 2009 Winter Simulation Conference (WSC). doi:10.1109/wsc.2009.5429318Macal, C. M., & North, M. J. (2010). Tutorial on agent-based modelling and simulation. Journal of Simulation, 4(3), 151-162. doi:10.1057/jos.2010.3Bonabeau, E. (2002). Agent-based modeling: Methods and techniques for simulating human systems. Proceedings of the National Academy of Sciences, 99(Supplement 3), 7280-7287. doi:10.1073/pnas.082080899Belsare, A. V., & Gompper, M. E. (2015). A model-based approach for investigation and mitigation of disease spillover risks to wildlife: Dogs, foxes and canine distemper in central India. Ecological Modelling, 296, 102-112. doi:10.1016/j.ecolmodel.2014.10.031Raberto, M., Cincotti, S., Focardi, S. M., & Marchesi, M. (2001). Agent-based simulation of a financial market. Physica A: Statistical Mechanics and its Applications, 299(1-2), 319-327. doi:10.1016/s0378-4371(01)00312-0Barbosa, J., & Leitao, P. (2011). Simulation of multi-agent manufacturing systems using Agent-Based Modelling platforms. 2011 9th IEEE International Conference on Industrial Informatics. doi:10.1109/indin.2011.6034926Wooldridge, M., & Jennings, N. R. (1995). Intelligent agents: theory and practice. The Knowledge Engineering Review, 10(2), 115-152. doi:10.1017/s0269888900008122Franklin, S., & Graesser, A. (1997). Is It an agent, or just a program?: A taxonomy for autonomous agents. Lecture Notes in Computer Science, 21-35. doi:10.1007/bfb0013570HEXMOOR, H. (2002). A model of absolute autonomy and power: Toward group effects. Connection Science, 14(4), 323-333. doi:10.1080/0954009021000068727Hexmoor, H., Castelfranchi, C., & Falcone, R. (Eds.). (2003). Agent Autonomy. Multiagent Systems, Artificial Societies, and Simulated Organizations. doi:10.1007/978-1-4419-9198-0Brewka, G. (1996). Artificial intelligence—a modern approach by Stuart Russell and Peter Norvig, Prentice Hall. Series in Artificial Intelligence, Englewood Cliffs, NJ. The Knowledge Engineering Review, 11(1), 78-79. doi:10.1017/s0269888900007724Agent based Modelling and Simulation using State Machines. (2012). Proceedings of the 2nd International Conference on Simulation and Modeling Methodologies, Technologies and Applications. doi:10.5220/0004164802700279Miao, C. Y., Goh, A., Miao, Y., & Yang, Z. H. (2002). Agent that models, reasons and makes decisions. Knowledge-Based Systems, 15(3), 203-211. doi:10.1016/s0950-7051(01)00157-5Dibley, M., Li, H., Rezgui, Y., & Miles, J. (2015). AN INTEGRATED FRAMEWORK UTILISING SOFTWARE AGENT REASONING AND ONTOLOGY MODELS FOR SENSOR BASED BUILDING MONITORING. Journal of Civil Engineering and Management, 21(3), 356-375. doi:10.3846/13923730.2014.890645González, E. J., Hamilton, A. F., Moreno, L., Marichal, R. L., & Muñoz, V. (2006). Software experience when using ontologies in a multi-agent system for automated planning and scheduling. Software: Practice and Experience, 36(7), 667-688. doi:10.1002/spe.711Ward, J. A., Evans, A. J., & Malleson, N. S. (2016). Dynamic calibration of agent-based models using data assimilation. Royal Society Open Science, 3(4), 150703. doi:10.1098/rsos.150703Wooldridge, M., & Jennings, N. R. (1995). Agent theories, architectures, and languages: A survey. Intelligent Agents, 1-39. doi:10.1007/3-540-58855-8_1Consoli, A., Tweedale, J., & Jain, L. (s. f.). The Link between Agent Coordination and Cooperation. Intelligent Information Processing III, 11-19. doi:10.1007/978-0-387-44641-7_2FIPA ACL Message Structure Specificationhttp://www.fipa.org/specs/fipa00061/SC00061G.htmlKibble, R. (2006). Speech acts, commitment and multi-agent communication. Computational & Mathematical Organization Theory, 12(2-3), 127-145. doi:10.1007/s10588-006-9540-zHadeli, Valckenaers, P., Kollingbaum, M., & Van Brussel, H. (2004). Multi-agent coordination and control using stigmergy. Computers in Industry, 53(1), 75-96. doi:10.1016/s0166-3615(03)00123-4Olfati-Saber, R., Fax, J. A., & Murray, R. M. (2007). Consensus and Cooperation in Networked Multi-Agent Systems. Proceedings of the IEEE, 95(1), 215-233. doi:10.1109/jproc.2006.887293Gulzar, M. M., Rizvi, S. T. H., Javed, M. Y., Munir, U., & Asif, H. (2018). Multi-Agent Cooperative Control Consensus: A Comparative Review. Electronics, 7(2), 22. doi:10.3390/electronics7020022Zambonelli, F., Omicini, A., Anzengruber, B., Castelli, G., De Angelis, F. L., Serugendo, G. D. M., … Ye, J. (2015). Developing pervasive multi-agent systems with nature-inspired coordination. Pervasive and Mobile Computing, 17, 236-252. doi:10.1016/j.pmcj.2014.12.002Severins, M., Klinkenberg, D., & Heesterbeek, H. (2007). Effects of heterogeneity in infection-exposure history and immunity on the dynamics of a protozoan parasite. Journal of The Royal Society Interface, 4(16), 841-849. doi:10.1098/rsif.2007.1061Šperka, R., & Spišák, M. (2013). TRANSACTION COSTS INFLUENCE ON THE STABILITY OF FINANCIAL MARKET: AGENT-BASED SIMULATION. Journal of Business Economics and Management, 14(Supplement_1), S1-S12. doi:10.3846/16111699.2012.701227Jong, J. de, Stellingwerff, L., & Pazienza, G. E. (2013). Eve: A Novel Open-Source Web-Based Agent Platform.

Similar works

Full text

thumbnail-image

RiuNet

redirect
Last time updated on 08/04/2021

This paper was published in RiuNet.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.