Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

A General Model for the Design of Efficient Sign-Coding Tools for Wavelet-Based Encoders

Abstract

[EN] Traditionally, it has been assumed that the compression of the sign of wavelet coefficients is not worth the effort because they form a zero-mean process. However, several image encoders such as JPEG 2000 include sign-coding capabilities. In this paper, we analyze the convenience of including sign-coding techniques into wavelet-based image encoders and propose a methodology that allows the design of sign-prediction tools for whatever kind of wavelet-based encoder. The proposed methodology is based on the use of metaheuristic algorithms to find the best sign prediction with the most appropriate context distribution that maximizes the resulting sign-compression rate of a particular wavelet encoder. Following our proposal, we have designed and implemented a sign-coding module for the LTW wavelet encoder, to evaluate the benefits of the sign-coding tool provided by our proposed methodology. The experimental results show that sign compression can save up to 18.91% of bit-rate when enabling sign-coding capabilities. Also, we have observed two general behaviors when coding the sign of wavelet coefficients: (a) the best results are provided from moderate to high compression rates; and (b) the sign redundancy may be better exploited when working with high-textured images.This research was supported by the Spanish Ministry of Economy and Competitiveness under Grant RTI2018-098156-B-C54, co-financed by FEDER funds (MINECO/FEDER/UE).López-Granado, OM.; Martínez-Rach, MO.; Martí-Campoy, A.; Cruz-Chávez, MA.; Pérez Malumbres, M. (2020). A General Model for the Design of Efficient Sign-Coding Tools for Wavelet-Based Encoders. Electronics. 9(11):1-17. https://doi.org/10.3390/electronics9111899117911Said, A., & Pearlman, W. A. (1996). A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Transactions on Circuits and Systems for Video Technology, 6(3), 243-250. doi:10.1109/76.499834ISO/IEC 15444-1:2019. Information technology—JPEG 2000 Image Coding System—Part 1: Core Coding Systemhttps://www.iso.org/standard/78321.htmlTaubman, D. (2000). High performance scalable image compression with EBCOT. IEEE Transactions on Image Processing, 9(7), 1158-1170. doi:10.1109/83.847830Bilgin, A., Sementilli, P. J., & Marcellin, M. W. (1999). Progressive image coding using trellis coded quantization. IEEE Transactions on Image Processing, 8(11), 1638-1643. doi:10.1109/83.799891Oliver, J., & Malumbres, M. P. (2006). Low-Complexity Multiresolution Image Compression Using Wavelet Lower Trees. IEEE Transactions on Circuits and Systems for Video Technology, 16(11), 1437-1444. doi:10.1109/tcsvt.2006.883505Cho, Y., & Pearlman, W. A. (2007). Hierarchical Dynamic Range Coding of Wavelet Subbands for Fast and Efficient Image Decompression. IEEE Transactions on Image Processing, 16(8), 2005-2015. doi:10.1109/tip.2007.901247Deever, A. T., & Hemami, S. S. (2003). Efficient sign coding and estimation of zero-quantized coefficients in embedded wavelet image codecs. IEEE Transactions on Image Processing, 12(4), 420-430. doi:10.1109/tip.2003.811499Mallat, S., & Zhong, S. (1992). Characterization of signals from multiscale edges. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(7), 710-732. doi:10.1109/34.142909López-Granado, O., Galiano, V., Martí, A., Migallón, H., Martínez-Rach, M., Piñol, P., & Malumbres, M. P. (2013). Improving image compression through the use of evolutionary computing algorithms. Data Management and Security. doi:10.2495/data130041Kodak Lossless True Color Image Suitehttp://r0k.us/graphics/kodak/Rawzor—Lossless Compression Software for Camera Raw Imageshttp://imagecompression.info/test_images

Similar works

Full text

thumbnail-image

RiuNet

redirect
Last time updated on 30/05/2021

This paper was published in RiuNet.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.