Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

HP-DCFNoC: High Performance Distributed Dynamic TDM Scheduler Based on DCFNoC Theory

Abstract

(c) 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.[EN] The need for increasing the performance of critical real-time embedded systems pushes the industry to adopt complex multi-core processor designs with embedded networks-on-chip. In this paper we present hp-DCFNoC, a distributed dynamic scheduler design that by relying on the key properties of a delayed confict-free NoC (DCFNoC) is able to achieve peak performance numbers very close to a wormhole-based NoC design without compromising its real-time guarantees. In particular, our results show that the proposed scheduler achieves an overall throughput improvement of 6.9x and 14.4x over a baseline DCFNoC for 16 and 64-node meshes, respectively. When compared against a standard wormhole router 95% of its network throughput is preserved while strict timing predictability as property is kept. This achievement opens the door to new high performance time predictable NoC designs.This work was supported in part by the Secretara de Estado de Investigacin Desarrollo e Innovacin (MINECO) under Grant BES-2016-076885, in part by the European Regional Development Fund (ERDF) under Grant TIN2015-66972-C05-1-R and Grant RTI2018-098156-B-C51, and in part by the EC H2020 European Institute of Innovation and Technology (SELENE) Project under Grant 871467.Picornell-Sanjuan, T.; Flich Cardo, J.; Duato Marín, JF.; Hernández Luz, C. (2020). HP-DCFNoC: High Performance Distributed Dynamic TDM Scheduler Based on DCFNoC Theory. IEEE Access. 8:194836-194849. https://doi.org/10.1109/ACCESS.2020.3033853194836194849

Similar works

Full text

thumbnail-image

RiuNet

redirect
Last time updated on 30/05/2021

This paper was published in RiuNet.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.