Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Evaluating the impact of highway construction projects on landscape ecological risks in high altitude plateaus

Abstract

[EN] In China and other countries, many highway projects are built in extensive and high-altitude flat areas called plateaus. However, research on how the materialisation of these projects produce a series of ecological risks in the landscape is very limited. In this research, a landscape ecological risk analysis model for high-altitude plateaus is proposed. This model is based on the pattern of land uses of the surrounding area. Our study includes buffer analysis, spatial analysis, and geostatistical analysis. We apply the model to the Qumei to Gangba highway, a highway section located in the southeast city of Shigatse at the Chinese Tibet autonomous region. Through global and local spatial autocorrelation analysis, the spatial clustering distribution of ecological risks is also explored. Overall, our study reveals the spatial heterogeneity of ecological risks and how to better mitigate them. According to a comparison of the risk changes in two stages (before and after the highway construction), the impact of highway construction on the ecological environment can be comprehensively quantified. This research will be of interest to construction practitioners seeking to minimize the impact of highway construction projects on the ecological environment. It will also inform future empirical studies in the area of environmental engineering with potential affection to the landscape in high-altitude plateaus.This research is supported by the Branch of China Road and Bridge Corporation (Cambodia) Technology Development Project (No.2020-zlkj-04); National Social Science Fund Projects (No.20BJY010); National Social Science Fund Post-financing Projects (No.19FJYB017); Sichuan-Tibet Railway Major Fundamental Science Problems Special Fund (No.71942006); Qinghai Natural Science Foundation (No. 2020-JY-736); List of Key Science and Technology Projects in China's Transportation Industry in 2018-International Science and Technology Cooperation Project (Nos. 2018-GH-006 and 2019-MS5-100); Emerging Engineering Education Research and Practice Project of Ministry of Education of China (No. E-GKRWJC20202914); Shaanxi Social Science Fund (No. 2017S004); Xi'an Construction Science and Technology Planning Project (Nos. SZJJ201915 and SZJJ201916); Shaanxi Province Higher Education Teaching Reform Project (No. 19BZ016); Fundamental Research for Funds for the Central Universities (Humanities and Social Sciences), Chang'an University (Nos. 300102239616, 300102281669 and 300102231641).Li, C.; Zhang, J.; Philbin, SP.; Yang, X.; Dong, Z.; Hong, J.; Ballesteros-Pérez, P. (2022). Evaluating the impact of highway construction projects on landscape ecological risks in high altitude plateaus. Scientific Reports. 12(1):1-16. https://doi.org/10.1038/s41598-022-08788-8116121Tsering, D. Transport development in Tibet since the democratic reform in 1959. J. Tibetan Stud. 76–85 (2019).Yan, X. et al. Relationships between heavy metal concentrations in roadside topsoil and distance to road edge based on field observations in the Qinghai-Tibet Plateau, China. Int. J. Environ. Res. Public Health. 10(3), 762–765 (2013).Berling-Wolff, S. & Jianguo, W. U. Modeling urban landscape dynamics: A case study in Phoenix, USA. J. Urban Ecosyst. 7(3), 215–240 (2004).Jianzhou, G., Yansui, L. & Beicheng, X. Spatial heterogeneity of urban land-cover landscape in Guangzhou from 1990 to 2005. J. Geogr. Sci. 19(2), 213–224 (2009).Pan, L., Zhang, H. & Liu, A. Analysis of threshold of road networks effecting landscape fragmentation in Chongqing. J. Ecol. Sci. 34(5), 45–51 (2015).Paukert, C. P., Pitts, K. L., Whittier, J. B. & Oldenc, J. D. Development and assessment of a landscape-scale ecological threat index for the Lower Colorado River Basin. J. Ecol. Indic. 11(2), 304–310 (2011).Li, H., Yu, Q., Li, N., Wang, J. & Yang, Y. Study on landscape dynamics and driving mechanisms of the Shudu Lake catchment wetlands in Northwest Yunnan. J. West China Forest. Sci. 42(3), 34–39 (2013).Yunqing, H., Jinxi, W. & Hong, J. The dynamics of land cover change pattern and landscape fragmentation in Jiuzhaigou Nature Reserve, China. J. Proc. SPIE Int. Soc. Opt. Eng. 7498, 74983P (2009).Hu, L. et al. Landscape pattern in Nanwenghe nature reserve and its driving forces. J. Protect. Forest Sci. Technol. 0(7), 18–21 (2015).Li, X. et al. Land use/cover and landscape pattern changes in Manas River Basin based on remote sensing. J. Int. J. Agric. Biol. Eng. 13(5), 141–152 (2020).Andrejs, R. & Merkurjevs, J. Software tool implementing the fuzzy AHP method in ecological risk assessment. J. Inform. Technol. Manag. Sci. 20(1), 34–39 (2017).Peng, J., Dang, W., Liu, Y., Zong, M. & Hu, X. Research progress and prospect of landscape ecological risk assessment. J. Acta Geogr. Sin. 70(04), 664–677 (2015).Xu, Y., Fu, B. & Lü, H. Research on landscape pattern and ecological processes based on landscape models. J. Acta Ecol. Sin. 30(1), 212–220 (2010).Forman, R. Road ecology: A solution for the giant embracing us. J. Landsc. Ecol. 13(4), 3–5 (1998).Minxi, W., Shiliang, L., Baoshan, C. & Min, Y. Impacts of hydroelectric project construction on nature reserve and assessment. J. Acta Ecol. Sin. 28(4), 1663–1671 (2008).Yang, K., Deng, X., Xue-Ling, L. I. & Wen, P. Impacts of hydroelectric cascade exploitation on river ecosystem and landscape: A review. J. Acta Ecol. Sin. 22(5), 1359–1367 (2011).Chen, L. D., Wang, J. P., Jiang, C. L. & Zhang, H. P. Quantitative study on effect of linear project construction on landscape pattern along pipeline. J. Sci. Geogr. Sin. 30(2), 161–167 (2010).Qianqian, H., Luomeng, C. & Shanlin, W. Impact of expressway on land use and landscape pattern: A case study of Putan Guai to Chenghao section of Inner Mongolia Provincial Highway 103. J. Environ. Protect. Sci. 35(05), 58–61 (2009).Huang, Y., Li, Y. & Ying, H. Responses of Chongqing-Yi Expressway to land use change and landscape pattern. J. Nat. Resourc. 30(09), 1449–1460 (2015).Keken, Z., Sebkova, M. & Skalos, J. Analyzing land cover change—The impact of the motorway construction and their operation on landscape structure. J. Geogr. Inform. Syst. 6(5), 559–571 (2014).Mengna, H. & Ting, M. Assessing the impacts of China’s road network on landscape fragmentation and protected areas. J. Geo-inform. Sci. 21(8), 1183–1195 (2019).Mothorpe, C., Hanson, A. & Schnier, K. The impact of interstate highways on land use conversion. J. Ann. Reg. Sci. 51(3), 833–870 (2013).Wu, C.-F., Lin, Y.-P., Chiang, L.-C. & Huang, T. Assessing highway’s impacts on landscape patterns and ecosystem services: a case study in Puli Township, Taiwan. J. Landsc. Urban Plan. 128, 60–71 (2014).Jia, L., Lei, T. & Yan, S. H. Environmental impact analysis and control measures in tunnel construction. J. Appl. Mech. Mater. 90–93, 3250–3253 (2011).Wang, M. Analysis of high-speed railway construction on ecological environment impact and environmental protection contribution. J. Railway Constr. Technol. https://doi.org/10.3969/j.issn.1009-4539.2015.04.019 (2015).He, Y. & Xiong, C. Environmental impact of waste slurry in pile foundation construction of high-speed railway bridges and its countermeasures. J. Adv. Mater. Res. 383–390, 3690–3694 (2011).Jing, C. et al. Influence of cross-sea bridge project on water quality and ecological environment of nearby sea and its tracking, monitoring and verification. J. Ocean Dev. Manag. 37(10), 96–100 (2020).Jianhua, X., Mingquan, W., Shijian, Z. & Zheng, N. Remote sensing monitoring of ecological and economic impacts of major Railway construction along the Belt and Road. J. Sci. Technol. Eng. 20(11), 9 (2020).Fang, L. On ecological environment impact assessment of metal mine construction project. J. Nonferrous Metals (Min. Sect.). 64(03), 58–60 (2012).Bian, B., Lin, C. & Wu, H. S. Contamination and risk assessment of metals in road-deposited sediments in a medium-sized city of China. J. Ecotoxicol. Environ. Saf. 112, 87–95 (2015).Limin, Y., Yanhai, Z., Rongzu, Q. & Xisheng, H. The influence of regional road construction on landscape ecology on both sides: A case study of Jiangle County, Fujian Province. J. Sichuan Agric. Univ. 33(2), 159–165 (2015).Liang, Z. & Nianlai, C. Analysis on the impact of Jinwu Expressway on ecological environment based on comprehensive index evaluation method. J. Environ. Sustain. Dev. 44(3), 137–139 (2019).Ting, W. & Zongmin, W. Study on eco-environmental impact assessment system of highway construction. J. Resourc. Econom. Environ. Protect. 3, 129–132. (2015).Igondova, E., Pavlickova, K. & Majzlan, O. The ecological impact assessment of a proposed road development (the Slovak approach). J. Environ. Impact Assessm. Rev. 59, 43–54 (2016).Chen, L., Fu, B. & Zhao, W. Source-sink landscape theory and its ecological significance. J. Front. Biol. China 3(2), 131–136 (2008).Wu, J. et al. Spatial differentiation of landscape ecological risk in opencast mining area. J. Acta Ecol. Sin. 33(12), 3816–3824 (2013).Wang, J., Cui, B., Liu, J., Yao, H. & Juan, H. The effect of land use and its change on ecological risk in the Lancang River watershed of Yunnan Province at the landscape scale. J. Acta Sci. Circumstan. 2, 269–277 (2008).Xie, H. Regional eco-risk analysis based on landscape structure and spatial statistics. J. Acta Ecol. Sin. 28(10), 5020–5026 (2008).Jinggang, L. I., Chunyang, H. E. & Xiaobing, L. I. Landscape ecological risk assessment of natural/semi-natural landscapes in fast urbanization regions——A case study in Beijing, China. J. Nat. Resourc. 23(1), 33–47 (2008).Jie, W., Wanqi, B. & Guoxing, T. Temporal and spatial characteristics of landscape ecological risk in Qinghai-Tibet Plateau. J. Resour. Sci. 42(9), 1739–1749 (2020).Xuegong, X., Huiping, L., Zaiyi, F. & Rencang, B. Ecological risk assessment of wetland area in Yellow River Delta. J. Acta Sci. Nat. Univ. Pekinensis. 01, 111–120 (2001).Malekmohammadi, B. & Blouchi, L. Ecological risk assessment of wetland ecosystems using multi criteria decision making and geographic information system. J. Ecol. Indic. 41, 133–144 (2014).Campos, P., Paz, T., Lenz, L., Qiu, Y. & Paz, I. Multi-criteria decision method for sustainable watercourse management in urban areas. J. Sustain. 12(16), 6493–6514 (2020).Peng, L. et al. Research on ecological risk assessment in land use model of Shengjin Lake in Anhui province, China. J. Environ. Geochem. Health. 41(6), 2665–2679 (2019).Zhang, D., Yang, S., Wang, Z., Yang, C. & Chen, Y. Assessment of ecological environment impact in highway construction activities with improved group AHP-FCE approach in China. J. Environ. Monit. Assess. 192(7), 451–469 (2020).Luan, B. et al. Evaluating green stormwater infrastructure strategies efficiencies in a rapidly urbanizing catchment using SWMM-based topsis. J. Clean. Prod. 223, 680–691 (2019).Ramya, S. & Devadas, V. Integration of GIS, AHP and TOPSIS in evaluating suitable locations for industrial development: A case of Tehri Garhwal district, Uttarakhand, India. J. Clean. Prod. 238, 117872 (2019).Koc, K., Ekmekciolu, M. & Zger, M. An integrated framework for the comprehensive evaluation of low impact development strategies. J. Environ. Manag. 294, 113023 (2021).Xiumei, T., Yu, L., Yanmin, R., Yuchun, P. & Xingyao, H. Study on change of land use and ecosystem service value along expressway. J. China Agric. Univ. 21(2), 132–139 (2016).Fei, Z., Shanjiang, Y. & Dongfang, W. Ecological risk assessment due to land use/cover changes (LUCC) in Jinghe County, Xinjiang, China from 1990 to 2014 based on landscape patterns and spatial statistics. J. Environ. Earth. Sci. 77(13), 491 (2018).Rangel-Buitrago, N., Neal, W. J. & de Jonge, V. N. Risk assessment as tool for coastal erosion management. J. Ocean Coast. Manag. 186, 105099 (2020).Mo, W., Wang, Y., Zhang, Y. & Zhuang, D. Impacts of road network expansion on landscape ecological risk in a megacity, China: A case study of Beijing. J. Sci. Total Environ. 574, 1000–1011 (2017).Getis, A. & Ord, J. K. The analysis of spatial association by use of distance statistics. J. Springer Berlin Heidelberg. 24(3), 189–206 (2010).Yingxue, Z., Wenbo, M., Yong, W. & Dafang, Z. Impact of land use change on landscape pattern around expressways in Beijing. J. Geo-Inform. Sci. 19(001), 28–38 (2017).Gang, Z., HuiJun, G. & Guang, Z. Changes of wetland landscape pattern in arid inland area of Northwest China: A case study of inner flow area in Junggar, Xinjiang. J. Arid Land Resourc. Environ. 28(8), 77–82 (2014).Haihang, W., Qianhui, Z., Jiayao, Z. & Chunguo, Z. Analysis on dynamic change of landscape pattern of land use in Zhushan County. J. Forest Resourc. Manag. 6, 76–83 (2018).Shiliang, L., Zhifeng, Y., Baoshan, C. & Shu, G. Impact of road on landscape and ecological risk assessment: A case study of Lancang River Basin. J. Chin. J. Ecol. 8, 897–901 (2005).Yuan, Y. et al. Flood-landscape ecological risk assessment under the background of urbanization. J. Water. 11(7), 1418 (2019).Xie, H., Wang, P. & Huang, H. Ecological risk assessment of land use change in the Poyang lake Eco-economic zone, China. J. Int. J. Environ. Res. Public Health. 10(1), 328–346 (2013).Fengjiao, X. & Xiao, L. Ecological risk pattern in coastal areas of Jiangsu Province based on land use change. J. Acta Ecol. Sin. 38(20), 7312–7325 (2018).Mann, D., Anees, M. M., Rankavat, S. & Joshi, P. K. Spatio-temporal variations in landscape ecological risk related to road network in the Central Himalaya. J. Hum. Ecol. Risk Assess. https://doi.org/10.1080/10807039.2019.1710693 (2020).Oliveira, B. R. D., Costa, E. L. D., Carvalho-Ribeiro, S. M. & Maia-Barbosa, P. M. Land use dynamics and future scenarios of the Rio Doce State Park buffer zone, Minas Gerais, Brazil. J. Environ. Monit. Assessm. 192(1), 39.1–39.12 (2020).Li, Y., Sun, Y. & Li, J. Heterogeneous effects of climate change and human activities on annual landscape change in coastal cities of mainland China. J. Ecol. Indic. https://doi.org/10.1016/j.ecolind.2021.107561 (2021).Dadashpoor, H., Azizi, P. & Moghadasi, M. Land use change, urbanization, and change in landscape pattern in a metropolitan area. J. Sci. Total Environ. 655(10), 707–709 (2019)

Similar works

Full text

thumbnail-image

RiuNet

redirect
Last time updated on 04/12/2022

This paper was published in RiuNet.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.