Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Multichannel massive audio processing for a generalized crosstalk cancellation and equalization application using GPUs

Abstract

[EN] Multichannel acoustic signal processing has undergone major development in recent years due to the increased com- plexity of current audio processing applications, which involves the processing of multiple sources, channels, or filters. A gen- eral scenario that appears in this context is the immersive reproduction of binaural audio without the use of headphones, which requires the use of a crosstalk canceler. However, generalized crosstalk cancellation and equalization (GCCE) requires high com- puting capacity, which is a considerable limitation for real-time applications. This paper discusses the design and implementation of all the processing blocks of a multichannel convolution on a GPU for real-time applications. To this end, a very efficient fil- tering method using specific data structures is proposed, which takes advantage of overlap-save filtering and filter fragmentation. It has been shown that, for a real-time application with 22 inputs and 64 outputs, the system is capable of managing 1408 filters of 2048 coefficients with a latency time less than 6 ms. The proposed GPU implementation can be easily adapted to any acoustic environment, demonstrating the validity of these co-processors for managing intensive multichannel audio applications.This work has been partially funded by Spanish Ministerio de Ciencia e Innovacion TEC2009-13741, Generalitat Valenciana PROMETEO 2009/2013 and GV/2010/027, and Universitat Politecnica de Valencia through Programa de Apoyo a la Investigacion y Desarrollo (PAID-05-11).Belloch Rodríguez, JA.; Gonzalez, A.; Martínez Zaldívar, FJ.; Vidal Maciá, AM. (2013). Multichannel massive audio processing for a generalized crosstalk cancellation and equalization application using GPUs. Integrated Computer-Aided Engineering. 20(2):169-182. https://doi.org/10.3233/ICA-13042216918220

Similar works

Full text

thumbnail-image

RiuNet

redirect
Last time updated on 25/12/2019

This paper was published in RiuNet.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.