Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Memory-based adaptive sliding mode load frequency control in interconnected power systems with energy storage

Abstract

This paper presents a memory-based adaptive sliding mode load frequency control (LFC) strategy aimed at minimizing the impacts of exogenous power disturbances and parameter uncertainties on frequency deviations in interconnected power systems with energy storage. First, the dynamic model of the system is constructed by considering the participation of the energy storage system (ESS) in the conventional decentralized LFC model of a multiarea power system. A disturbance observer (DOB) is proposed to generate an online approximation of the lumped disturbance. In order to enhance the transient performance of the system and effectively mitigate the adverse effects of power fluctuations on grid frequency, a novel memory-based sliding surface is developed. This sliding surface incorporates the estimation of the lumped disturbance, as well as the past and present information of the state variables. The conservative assumption about the lumped disturbance is eased by considering the unknown upper bound of the disturbance and its first derivative. Based on the output of the proposed DOB, an adaptive continuous sliding mode controller with prescribed H performance index is introduced. This controller ensures that the sliding surface is reachable and guarantees asymptotic stability of the closed-loop system. The controller design utilizes strict linear matrix inequalities (LMIs) to achieve these objectives. Finally, the applicability and efficacy of the proposed scheme are verified through comparative simulation cases. Autho

Similar works

This paper was published in Research Online @ ECU.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.