Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Flexible surface electrodes targeting biopotential signals from forearm muscles for control of prosthetic hands: Part 1 - Characterisation of semg electrodes

Abstract

This study is Part 1 of two studies which investigate the use of various flexible surface sensors as an alternative to the gold standard Ag/AgCl surface electromyography (sEMG) electrodes in identifying movement intention from a user during common hand gestures. Three conductive textiles, two commercial conductive elastomers and one E-skin elastomer produced on site were tested as biopotential electrodes to establish the efficacy of each in gathering movement intention from the human brain at the level of the muscle. Testing was performed in vivo on two participants across three hand gestures, with results demonstrating that sEMG electrodes made from a commercially sourced conductive fabric can outperform the traditional Ag/AgCl sEMG electrodes, obtaining substantially larger peak and RMS measurements. Given the disadvantages of Ag/AgCl electrodes over long usage periods, namely their tendency to dry out and significant skin preparation, resulting in variable impedances and skin irritation respectively, the incorporation of flexible surface EMG electrodes in hand prosthetic control systems would increase functionality of the prosthetic devices, consequently increasing the quality of life of prosthetic hand users

Similar works

This paper was published in Research Online.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.