Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

The conserved ubiquitin-like protein Hub1 plays a critical role in splicing in human cells

Abstract

Different from canonical ubiquitin-like proteins, Hub 1 does not form covalent conjugates with substrates but binds proteins non- covalently. In Saccharomyces cerevisiae , Hub 1 associates with spliceosomes and mediates alternative splicing of SRC 1 , without affecting pre-mRNA splicing generally. Human Hub 1 is highly similar to its yeast homolog, but its cellular function remains largely unexplored. Here, we show that human Hub 1 binds to the spliceosomal protein Snu 66 as in yeast; however, unlike its S. cerevisiae homolog, human Hub 1 is essential for viability. Prolonged in vivo depletion of human Hub 1 leads to various cellular defects, including splicing speckle abnormalities, partial nuclear retention of mRNAs, mitotic catastrophe, and consequently cell death by apoptosis. Early consequences of Hub 1 depletion are severe splicing defects, however, only for specific splice sites leading to exon skipping and intron retention. Thus, the ubiquitin-like protein Hub 1 is not a canonical spliceosomal factor needed generally for splicing, but rather a modulator of spliceosome performance and facilitator of alternative splicing

Similar works

This paper was published in Jagiellonian Univeristy Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.