Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Optimization on fresh outdoor air ratio of air conditioning system with stratum ventilation for both targeted indoor air quality and maximal energy saving

Abstract

Stratum ventilation can energy efficiently provide good inhaled indoor air quality with a proper operation (e.g., fresh outdoor air ratio). However, the non-uniform CO2 distribution in a stratum-ventilated room challenges the provision of targeted indoor air quality. This study proposes an optimization on the fresh outdoor air ratio of stratum ventilation for both the targeted indoor air quality and maximal energy saving. A model of CO2 concentration in the breathing zone is developed by coupling CO2 removal efficiency in the breathing zone and mass conservation laws. With the developed model, the ventilation parameters corresponding to different fresh outdoor air ratios are quantified to achieve the targeted indoor air quality (i.e., targeted CO2 concentration in the breathing zone). Using the fresh outdoor air ratios and corresponding ventilation parameters as inputs, energy performance evaluations of the air conditioning system are conducted by building energy simulations. The fresh outdoor air ratio with the minimal energy consumption is determined as the optimal one. Experiments show that the mean absolute error of the developed model of CO2 concentration in the breathing zone is 1.9%. The effectiveness of the proposed optimization is demonstrated using TRNSYS that the energy consumption of the air conditioning system with stratum ventilation is reduced by 6.4% while achieving the targeted indoor air quality. The proposed optimization is also promising for other ventilation modes for targeted indoor air quality and improved energy efficiency

    Similar works

    Full text

    thumbnail-image

    University of Salford Institutional Repository

    redirect
    Last time updated on 06/06/2023

    Having an issue?

    Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.