Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Assessment of perceptual distortion boundary through applying reversible watermarking to brain MR images

Abstract

The digital medical workflow faces many circumstances in which the images can be manipulated during viewing, extracting and exchanging. Reversible and imperceptible watermarking approaches have the potential to enhance trust within the medical imaging pipeline through ensuring the authenticity and integrity of the images to confirm that the changes can be detected and tracked. This study concentrates on the imperceptibility issue. Unlike reversibility, for which an objective assessment can be easily made, imperceptibility is a factor of human cognition that needs to be evaluated within the human context. By defining a perceptual boundary of detecting the modification, this study enables the formation of objective guidelines for the method of data encoding and level of image/pixel modification that translates to a specific watermark magnitude. This study implements a relative Visual Grading Analysis (VGA) evaluation of 117 brain MR images (8 original and 109 watermarked), modified by varying techniques and magnitude of image/pixel modification to determine where this perceptual boundary exists and relate the point at which change becomes noticeable to the objective measures of the image fidelity evaluation. The outcomes of the visual assessment were linked to the images Peak Signal to Noise Ratio (PSNR) values, thereby identifying the visual degradation threshold. The results suggest that, for watermarking applications, if a watermark is applied to the 512x512 pixel (16 bpp grayscale) images used in the study, a subsequent assessment of PSNR=82dB or greater would mean that there would be no reason to suspect that the watermark would be visually detectable. Keywords: Medical imaging; DICOM; Reversible Watermarking; Imperceptibility; Image Quality; Visual Grading Analysis

Similar works

Full text

thumbnail-image

University of Salford Institutional Repository

redirect
Last time updated on 06/06/2023

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.