Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Bounding inconsistency using a novel threshold metric for dead reckoning update packet generation

Abstract

Human-to-human interaction across distributed applications requires that sufficient consistency be maintained among participants in the face of network characteristics such as latency and limited bandwidth. The level of inconsistency arising from the network is proportional to the network delay, and thus a function of bandwidth consumption. Distributed simulation has often used a bandwidth reduction technique known as dead reckoning that combines approximation and estimation in the communication of entity movement to reduce network traffic, and thus improve consistency. However, unless carefully tuned to application and network characteristics, such an approach can introduce more inconsistency than it avoids. The key tuning metric is the distance threshold. This paper questions the suitability of the standard distance threshold as a metric for use in the dead reckoning scheme. Using a model relating entity path curvature and inconsistency, a major performance related limitation of the distance threshold technique is highlighted. We then propose an alternative time—space threshold criterion. The time—space threshold is demonstrated, through simulation, to perform better for low curvature movement. However, it too has a limitation. Based on this, we further propose a novel hybrid scheme. Through simulation and live trials, this scheme is shown to perform well across a range of curvature values, and places bounds on both the spatial and absolute inconsistency arising from dead reckoning

Similar works

Full text

thumbnail-image

University of Salford Institutional Repository

redirect
Last time updated on 06/06/2023

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.