Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

The Miniaturization of the AFIT Random Noise Radar

Abstract

Advances in technology and signal processing techniques have opened the door to using an UWB random noise waveform for radar imaging. This unique, low probability of intercept waveform has piqued the interest of the U.S. DoD as well as law enforcement and intelligence agencies alike. While AFIT\u27s noise radar has made significant progress, the current architecture needs to be redesigned to meet the space constraints and power limitations of an aerial platform. This research effort is AFIT\u27s first attempt at RNR miniaturization and centers on two primary objectives: 1) identifying a signal processor that is compact, energy efficient, and capable of performing the demanding signal processing routines and 2) developing a high-speed correlation algorithm that is suited for the target hardware. A correlation routine was chosen as the design goal because of its importance to the noise radar\u27s ability to estimate the presence of a return signal. Furthermore, it is a computationally intensive process that was used to determine the feasibility of the processing component. To determine the performance of the proposed algorithm, results from simulation and experiments involving representative hardware were compared to the current system. Post-implementation reports of the FPGA-based correlator indicated zero timing failures, less than a Watt of power consumption, and a 44% utilization of the Virtex-5\u27s logic resources

Similar works

Full text

thumbnail-image

AFTI Scholar (Air Force Institute of Technology)

redirect
Last time updated on 02/01/2020

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.